{"id":899631,"date":"2022-11-19T16:00:11","date_gmt":"2022-11-20T00:00:11","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/"},"modified":"2024-08-27T14:11:33","modified_gmt":"2024-08-27T21:11:33","slug":"neural-graphical-models","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/neural-graphical-models\/","title":{"rendered":"Neural Graphical Models"},"content":{"rendered":"

Graphs are ubiquitous and are often used to understand the dynamics of a system. Probabilistic Graphical Models comprising Bayesian and Markov networks, and Conditional Independence graphs are some of the popular graph representation techniques. They can model relationships between features (nodes) together with the underlying distribution. Although theoretically these models can represent very complex dependency functions, in practice often simplifying assumptions are made due to computational limitations associated with graph operations. This work introduces Neural Graphical Models (NGMs) which attempt to represent complex feature dependencies with reasonable computational costs. Specifically, given a graph of feature relationships and corresponding samples, we capture the dependency structure between the features along with their complex function representations by using neural networks as a multi-task learning framework. We provide efficient learning, inference and sampling algorithms for NGMs. Moreover, NGMs can fit generic graph structures including directed, undirected and mixed-edge graphs as well as support mixed input data types. We present empirical studies that show NGMs’ capability to represent Gaussian graphical models, inference analysis of a lung cancer data and extract insights from a real-world infant mortality data provided by CDC.<\/p>\n

Software: Neural Graphical Models<\/a><\/p>\n

Additional discussions: Microsoft Research Blog<\/a>, Tech Blog<\/a><\/p>\n

 <\/p>\n

\"NGM

NGM architecture (Multimodal inputs)<\/p><\/div>\n","protected":false},"excerpt":{"rendered":"

Graphs are ubiquitous and are often used to understand the dynamics of a system. Probabilistic Graphical Models comprising Bayesian and Markov networks, and Conditional Independence graphs are some of the popular graph representation techniques. They can model relationships between features (nodes) together with the underlying distribution. Although theoretically these models can represent very complex dependency […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13553],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246691,246658,246685],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-899631","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-medical-health-genomics","msr-locale-en_us","msr-field-of-study-computer-science","msr-field-of-study-deep-learning","msr-field-of-study-machine-learning"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2023-9-21","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/pdf\/2210.00453.pdf","label_id":"243109","label":0},{"type":"doi","viewUrl":"false","id":"false","title":"https:\/\/doi.org\/10.48550\/arXiv.2210.00453","label_id":"243106","label":0}],"msr_related_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2210.00453","label_id":"243118","label":0}],"msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Harsh Shrivastava","user_id":41299,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Harsh Shrivastava"},{"type":"user_nicename","value":"Urszula Chajewska","user_id":38853,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Urszula Chajewska"}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[],"msr_project":[771556],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":771556,"post_title":"Science Engine","post_name":"project-s","post_type":"msr-project","post_date":"2021-09-28 15:48:20","post_modified":"2024-04-02 16:47:14","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/project-s\/","post_excerpt":"Project S is harnessing massive AI, solving and simulation to change the research and development (R&D) equation in industries that are anchored in hard sciences, including biopharma, chemicals, materials, alternative energy and decarbonization.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/771556"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/899631"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":7,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/899631\/revisions"}],"predecessor-version":[{"id":1080264,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/899631\/revisions\/1080264"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=899631"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=899631"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=899631"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=899631"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=899631"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=899631"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=899631"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=899631"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=899631"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=899631"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=899631"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=899631"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=899631"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=899631"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=899631"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=899631"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}