{"id":901137,"date":"2022-11-23T12:11:51","date_gmt":"2022-11-23T20:11:51","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/"},"modified":"2023-08-21T09:23:39","modified_gmt":"2023-08-21T16:23:39","slug":"deep-end-to-end-causal-inference-2","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/deep-end-to-end-causal-inference-2\/","title":{"rendered":"Deep End-to-end Causal Inference"},"content":{"rendered":"
Causal inference is essential for data-driven decision making across domains such as business engagement, medical treatment and policy making. However, research on causal discovery has evolved separately from causal inference, preventing straightforward combination of methods from both fields. In this work, we develop Deep End-to-end Causal Inference (DECI), a non-linear additive noise model with neural network functional relationships that takes in observational data and can perform both causal discovery and inference, including conditional average treatment effect (CATE) estimation. We provide a theoretical guarantee that DECI can asymptotically recover the ground truth causal graph and treatment effects when correctly specified. Our results show the competitive performance of DECI when compared to relevant baselines for both causal discovery and (C)ATE estimation in over a thousand experiments on both synthetic datasets and causal machine learning benchmarks.<\/p>\n","protected":false},"excerpt":{"rendered":"
Causal inference is essential for data-driven decision making across domains such as business engagement, medical treatment and policy making. However, research on causal discovery has evolved separately from causal inference, preventing straightforward combination of methods from both fields. In this work, we develop Deep End-to-end Causal Inference (DECI), a non-linear additive noise model with neural […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-901137","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2022-11-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/openreview.net\/forum?id=6DPVXzjnbDK","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Tomas Geffner","user_id":0,"rest_url":false},{"type":"text","value":"Javier Antoran","user_id":0,"rest_url":false},{"type":"guest","value":"adam-foster","user_id":797251,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=adam-foster"},{"type":"user_nicename","value":"Wenbo Gong","user_id":42873,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Wenbo Gong"},{"type":"user_nicename","value":"Chao Ma","user_id":42870,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Chao Ma"},{"type":"user_nicename","value":"Emre Kiciman","user_id":31739,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Emre Kiciman"},{"type":"user_nicename","value":"Amit Sharma","user_id":30997,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Amit Sharma"},{"type":"user_nicename","value":"Angus Lamb","user_id":39105,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Angus Lamb"},{"type":"user_nicename","value":"Martin Kukla","user_id":32783,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Martin Kukla"},{"type":"guest","value":"agrin-hilmkil","user_id":841858,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=agrin-hilmkil"},{"type":"guest","value":"joel-jennings","user_id":841852,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=joel-jennings"},{"type":"user_nicename","value":"Nick Pawlowski","user_id":40997,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Nick Pawlowski"},{"type":"guest","value":"miltiadis-allamanis","user_id":863772,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=miltiadis-allamanis"},{"type":"user_nicename","value":"Cheng Zhang","user_id":37428,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Cheng Zhang"}],"msr_impact_theme":[],"msr_research_lab":[199561],"msr_event":[],"msr_group":[],"msr_project":[788789,587692],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":788789,"post_title":"Causal Learning-Inference","post_name":"causal-learning-inference","post_type":"msr-project","post_date":"2021-10-26 21:59:44","post_modified":"2021-11-25 18:59:46","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/causal-learning-inference\/","post_excerpt":"Current AI models can learn spurious correlation during data-fitting process, which can incur the failure of generalizing to new unseen domains. To resolve this problem, we resort to causal inference, with the expectation to learning causal relation that is invariant and stable in any environment. Our departure to the traditional transfer learning lies in the causal perspective, that is, our goal is discovering and exploiting causal relations for out-of-distribution generalization. We will apply our models…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/788789"}]}},{"ID":587692,"post_title":"Project Causica: Decision Optimization with Causal ML","post_name":"project_azua","post_type":"msr-project","post_date":"2020-02-26 05:01:04","post_modified":"2024-02-28 03:27:19","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/project_azua\/","post_excerpt":"Project Causica aims to develop machine learning solutions for efficient decision making that demonstrate human expert-level performance across all domains.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/587692"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/901137"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/901137\/revisions"}],"predecessor-version":[{"id":901140,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/901137\/revisions\/901140"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=901137"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=901137"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=901137"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=901137"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=901137"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=901137"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=901137"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=901137"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=901137"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=901137"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=901137"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=901137"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=901137"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=901137"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=901137"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=901137"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}