{"id":927429,"date":"2023-03-15T04:38:39","date_gmt":"2023-03-15T11:38:39","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/"},"modified":"2023-03-15T04:38:39","modified_gmt":"2023-03-15T11:38:39","slug":"distillation-from-heterogeneous-models-for-top-k-recommendation","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/distillation-from-heterogeneous-models-for-top-k-recommendation\/","title":{"rendered":"Distillation from Heterogeneous Models for Top-K Recommendation"},"content":{"rendered":"
Recent recommender systems have shown remarkable performance by using an ensemble of heterogeneous models. However, it is exceedingly costly because it requires resources and inference latency proportional to the number of models, which remains the bottleneck for production.
\nOur work aims to transfer the ensemble knowledge of heterogeneous teachers to a lightweight student model using knowledge distillation (KD), to reduce the huge inference costs while retaining high accuracy. Through an empirical study, we find that the efficacy of distillation severely drops when transferring knowledge from heterogeneous teachers. Nevertheless, we show that an important signal to ease the difficulty can be obtained from the teacher’s training trajectory.<\/p>\n
This paper proposes a new KD framework, named \\proposed, that guides the student model by transferring easy-to-hard sequences of knowledge generated from the teachers’ trajectories. To provide guidance according to the student’s learning state, \\proposed uses \\textit{dynamic knowledge construction} to provide progressively difficult ranking knowledge and \\textit{adaptive knowledge transfer} to gradually transfer finer-grained ranking information. Our comprehensive experiments show that \\proposed significantly improves the distillation quality and the generalization of the student model.<\/p>\n","protected":false},"excerpt":{"rendered":"
Recent recommender systems have shown remarkable performance by using an ensemble of heterogeneous models. However, it is exceedingly costly because it requires resources and inference latency proportional to the number of models, which remains the bottleneck for production. Our work aims to transfer the ensemble knowledge of heterogeneous teachers to a lightweight student model using […]<\/p>\n","protected":false},"featured_media":927435,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13555],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[261638],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-927429","msr-research-item","type-msr-research-item","status-publish","has-post-thumbnail","hentry","msr-research-area-search-information-retrieval","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2023-4-30","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2023\/03\/HetComp-CR.pdf","id":"927432","title":"hetcomp-cr","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":927432,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2023\/03\/HetComp-CR.pdf"}],"msr-author-ordering":[{"type":"text","value":"SeongKu Kang","user_id":0,"rest_url":false},{"type":"text","value":"Wonbin Kweon","user_id":0,"rest_url":false},{"type":"text","value":"Dongha Lee","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Jianxun Lian","user_id":38470,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Jianxun Lian"},{"type":"user_nicename","value":"Xing Xie","user_id":34906,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Xing Xie"},{"type":"text","value":"Hwanjo Yu","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/927429"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/927429\/revisions"}],"predecessor-version":[{"id":927438,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/927429\/revisions\/927438"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media\/927435"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=927429"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=927429"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=927429"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=927429"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=927429"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=927429"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=927429"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=927429"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=927429"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=927429"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=927429"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=927429"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=927429"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=927429"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=927429"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=927429"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}