{"id":939507,"date":"2023-05-07T17:57:04","date_gmt":"2023-05-08T00:57:04","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/"},"modified":"2023-06-06T19:15:35","modified_gmt":"2023-06-07T02:15:35","slug":"virtual-machine-allocation-with-lifetime-predictions","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/virtual-machine-allocation-with-lifetime-predictions\/","title":{"rendered":"Virtual Machine Allocation with Lifetime Predictions"},"content":{"rendered":"

The emergence of machine learning technology has motivated the use of ML-based predictors in computer systems to improve their efficiency and robustness. However, there are still numerous algorithmic and systems challenges in effectively utilizing ML models in large-scale resource management services that require high throughput and response latency of milliseconds. In this paper, we describe the design and implementation of a VM allocation service that uses ML predictions of the VM lifetime to improve packing efficiencies. We design lifetime-aware placement algorithms that are provably robust to prediction errors and demonstrate their merits in extensive real-trace simulations. We significantly upgraded the VM allocation infrastructure of Microsoft Azure to support such algorithms that require ML inference in the critical path. A robust version of our algorithms has been recently deployed in production and obtains efficiency improvements expected from simulations.<\/p>\n","protected":false},"excerpt":{"rendered":"

The emergence of machine learning technology has motivated the use of ML-based predictors in computer systems to improve their efficiency and robustness. However, there are still numerous algorithmic and systems challenges in effectively utilizing ML models in large-scale resource management services that require high throughput and response latency of milliseconds. In this paper, we describe […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[246574],"research-area":[13561,13556,13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[262276,246685],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-939507","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-highlight-award","msr-research-area-algorithms","msr-research-area-artificial-intelligence","msr-research-area-systems-and-networking","msr-locale-en_us","msr-field-of-study-algorithms","msr-field-of-study-machine-learning"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2023-6-4","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"Outstanding Paper Award","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":0,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2023\/05\/MLSYS_Lifetime_final.pdf","id":"939510","title":"mlsys_lifetime_final","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[{"id":939510,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2023\/05\/MLSYS_Lifetime_final.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Hugo Barbalho","user_id":40744,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Hugo Barbalho"},{"type":"user_nicename","value":"Patricia Kovaleski","user_id":40681,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Patricia Kovaleski"},{"type":"user_nicename","value":"Beibin Li","user_id":41835,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Beibin Li"},{"type":"user_nicename","value":"Luke Marshall","user_id":37386,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Luke Marshall"},{"type":"user_nicename","value":"Marco Molinaro","user_id":42204,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Marco Molinaro"},{"type":"user_nicename","value":"Abhisek Pan","user_id":39847,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Abhisek Pan"},{"type":"text","value":"Eli Cortez","user_id":0,"rest_url":false},{"type":"text","value":"Matheus Leao","user_id":0,"rest_url":false},{"type":"text","value":"Harsh Patwari","user_id":0,"rest_url":false},{"type":"text","value":"Zuzu Tang","user_id":0,"rest_url":false},{"type":"guest","value":"tamires-santos","user_id":847402,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=tamires-santos"},{"type":"text","value":"Larissa Rozales Gon\u00e7alves","user_id":0,"rest_url":false},{"type":"text","value":"David Dion","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Thomas Moscibroda","user_id":32999,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Thomas Moscibroda"},{"type":"user_nicename","value":"Ishai Menache","user_id":32116,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ishai Menache"}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[569136],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/939507"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/939507\/revisions"}],"predecessor-version":[{"id":939513,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/939507\/revisions\/939513"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=939507"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=939507"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=939507"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=939507"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=939507"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=939507"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=939507"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=939507"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=939507"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=939507"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=939507"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=939507"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=939507"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=939507"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=939507"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=939507"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}