{"id":957018,"date":"2023-07-25T10:24:58","date_gmt":"2023-07-25T17:24:58","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=957018"},"modified":"2023-07-25T10:24:58","modified_gmt":"2023-07-25T17:24:58","slug":"project-florida-federated-learning-made-easy","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/project-florida-federated-learning-made-easy\/","title":{"rendered":"Project Florida: Federated Learning Made Easy"},"content":{"rendered":"
We present Project Florida, a system architecture and software development kit (SDK) enabling
\ndeployment of large-scale Federated Learning (FL) solutions across a heterogeneous device ecosystem.
\nFederated learning is an approach to machine learning based on a strong data sovereignty principle- i.e.
\nthat privacy and security of data is best enabled by storing it at its origin, whether on end-user devices
\nor in segregated cloud storage silos. Federated learning enables model training across devices and silos
\nwhile the training data remains within its security boundary, by distributing a model snapshot to a client
\nrunning inside the boundary, running client code to update the model, and then aggregating updated
\nsnapshots across many clients in a central orchestrator. Deploying a FL solution requires implementation
\nof complex privacy and security mechanisms as well as scalable orchestration infrastructure. Scale and
\nperformance is a paramount concern, as the model training process benefits from full participation of
\nmany client devices, which may have a wide variety of performance characteristics. Project Florida
\naims to simplify the task of deploying cross-device FL solutions by providing cloud-hosted infrastructure
\nand accompanying task management interfaces, as well as a multi-platform SDK supporting most major
\nprogramming languages including C++, Java, and Python, enabling FL training across a wide range of
\noperating system (OS) and hardware specifications. The architecture decouples service management from
\nthe FL workflow, enabling a cloud service provider to deliver FL-as-a-service (FLaaS) to ML engineers
\nand application developers. We present an overview of Florida, including a description of the architecture,
\nsample code, and illustrative experiments demonstrating system capabilities.<\/p>\n","protected":false},"excerpt":{"rendered":"
We present Project Florida, a system architecture and software development kit (SDK) enabling deployment of large-scale Federated Learning (FL) solutions across a heterogeneous device ecosystem. Federated learning is an approach to machine learning based on a strong data sovereignty principle- i.e. that privacy and security of data is best enabled by storing it at its […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556],"msr-publication-type":[193718],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[253024,246685],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-957018","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-locale-en_us","msr-field-of-study-federated-learning","msr-field-of-study-machine-learning"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2023-7-25","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"Microsoft","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2307.11899","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Daniel Eduardo Madrigal Diaz","user_id":40480,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Daniel Eduardo Madrigal Diaz"},{"type":"user_nicename","value":"Andre Manoel","user_id":40504,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Andre Manoel"},{"type":"guest","value":"jialei-chen","user_id":857427,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=jialei-chen"},{"type":"user_nicename","value":"Nalin Singal","user_id":37959,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Nalin Singal"},{"type":"user_nicename","value":"Robert Sim","user_id":36650,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Robert Sim"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[756487,761911,793670,1054512],"msr_project":[857376],"publication":[],"video":[],"download":[],"msr_publication_type":"techreport","related_content":{"projects":[{"ID":857376,"post_title":"Project Florida: Federated Learning made easy","post_name":"project-florida-federated-learning-made-easy","post_type":"msr-project","post_date":"2022-07-05 09:34:54","post_modified":"2023-07-25 10:25:55","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/project-florida-federated-learning-made-easy\/","post_excerpt":"Federated Learning made easy Cross-device Federated Learning solutions are notoriously challenging to ship- there are many moving parts that must work in concert, developers must refactor central training code to run on device, and deployment and experimentation are difficult. The goal of Project Florida is to provide click-to-deploy orchestration infrastructure and device SDKs that provide the backbone of FL solutions, so that developers and ML engineers can focus on the training task and subsequent experimentation.…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/857376"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/957018"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/957018\/revisions"}],"predecessor-version":[{"id":957021,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/957018\/revisions\/957021"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=957018"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=957018"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=957018"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=957018"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=957018"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=957018"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=957018"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=957018"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=957018"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=957018"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=957018"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=957018"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=957018"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=957018"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=957018"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=957018"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}