{"id":965418,"date":"2023-09-05T11:05:45","date_gmt":"2023-09-05T18:05:45","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=965418"},"modified":"2023-09-05T11:08:13","modified_gmt":"2023-09-05T18:08:13","slug":"satyam-democratizing-groundtruth-for-machine-vision","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/satyam-democratizing-groundtruth-for-machine-vision\/","title":{"rendered":"SATYAM: Democratizing Groundtruth for Machine Vision"},"content":{"rendered":"
The democratization of machine learning (ML) has led to ML-based machine vision systems for autonomous
\ndriving, traffic monitoring, and video surveillance. However, true democratization cannot be achieved without
\ngreatly simplifying the process of collecting groundtruth for training and testing these systems. This groundtruth
\ncollection is necessary to ensure good performance under varying conditions. In this paper, we present the
\ndesign and evaluation of Satyam, a first-of-its-kind system that enables a layperson to launch groundtruth
\ncollection tasks for machine vision with minimal effort. Satyam leverages a crowdtasking platform, Amazon
\nMechanical Turk, and automates several challenging aspects of groundtruth collection: creating and launching
\nof custom web-UI tasks for obtaining the desired groundtruth, controlling result quality in the face of spammers
\nand untrained workers, adapting prices to match task complexity, filtering spammers and workers with poor
\nperformance, and processing worker payments. We validate Satyam using several popular benchmark vision data
\nsets, and demonstrate that groundtruth obtained by Satyam is comparable to that obtained from trained experts
\nand provides matching ML performance when used for training.<\/p>\n","protected":false},"excerpt":{"rendered":"
The democratization of machine learning (ML) has led to ML-based machine vision systems for autonomous driving, traffic monitoring, and video surveillance. However, true democratization cannot be achieved without greatly simplifying the process of collecting groundtruth for training and testing these systems. This groundtruth collection is necessary to ensure good performance under varying conditions. In this […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13556,13562],"msr-publication-type":[193724],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246685],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-965418","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-artificial-intelligence","msr-research-area-computer-vision","msr-locale-en_us","msr-field-of-study-machine-learning"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2018-11-8","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"arXiv","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/pdf\/1811.03621.pdf","label_id":"243109","label":0}],"msr_related_uploader":[{"type":"file","viewUrl":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2023\/09\/Satyam-ArixV.pdf","id":"965421","title":"satyam-arixv","label_id":"243118","label":0}],"msr_attachments":[{"id":965421,"url":"https:\/\/www.microsoft.com\/en-us\/research\/uploads\/prod\/2023\/09\/Satyam-ArixV.pdf"}],"msr-author-ordering":[{"type":"user_nicename","value":"Krishna Chintalapudi","user_id":32577,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Krishna Chintalapudi"},{"type":"text","value":"Hang Qiu","user_id":0,"rest_url":false},{"type":"text","value":"Ramesh Govindan","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"miscellaneous","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/965418"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/965418\/revisions"}],"predecessor-version":[{"id":965427,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/965418\/revisions\/965427"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=965418"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=965418"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=965418"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=965418"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=965418"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=965418"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=965418"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=965418"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=965418"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=965418"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=965418"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=965418"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=965418"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=965418"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=965418"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=965418"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}