{"id":968220,"date":"2023-09-14T09:32:50","date_gmt":"2023-09-14T16:32:50","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=968220"},"modified":"2023-09-14T22:32:32","modified_gmt":"2023-09-15T05:32:32","slug":"renee-end-to-end-training-of-extreme-classification-models-2","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/renee-end-to-end-training-of-extreme-classification-models-2\/","title":{"rendered":"Renee: End-to-end training of extreme classification models"},"content":{"rendered":"
The goal of Extreme Multi-label Classification (XC) is to learn representations that enable mapping input texts to the most relevant subset of labels selected from an extremely large label set, potentially in hundreds of millions. Given the extreme scale, conventional wisdom believes it is infeasible to train an XC model in an end-to-end manner. Thus, for training efficiency, several modular and sampling-based approaches to XC training have been proposed in the literature. In this paper, we identify challenges in the end-to-end training of XC models and devise novel optimizations that improve training speed over an order of magnitude, making end-to-end XC model training practical. Furthermore, we show that our end-to-end trained model, Renee\u00b4 delivers state-of-the-art accuracy in a wide variety of XC benchmark datasets. Code for Renee is available at https:\/\/github.com\/microsoft\/renee.<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n
<\/p>\n","protected":false},"excerpt":{"rendered":"
The goal of Extreme Multi-label Classification (XC) is to learn representations that enable mapping input texts to the most relevant subset of labels selected from an extremely large label set, potentially in hundreds of millions. Given the extreme scale, conventional wisdom believes it is infeasible to train an XC model in an end-to-end manner. Thus, […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13556],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-968220","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-artificial-intelligence","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2023-6-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"http:\/\/manikvarma.org\/pubs\/jain23.pdf","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Vidit Jain","user_id":0,"rest_url":false},{"type":"text","value":"Jatin Prakash","user_id":0,"rest_url":false},{"type":"guest","value":"deepak-saini","user_id":795476,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=deepak-saini"},{"type":"text","value":"Jian Jiao","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Ramachandran Ramjee","user_id":33337,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Ramachandran Ramjee"},{"type":"user_nicename","value":"Manik Varma","user_id":32791,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Manik Varma"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[144940],"msr_project":[968667],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":968667,"post_title":"AI Infrastructure","post_name":"ai-infrastructure","post_type":"msr-project","post_date":"2023-10-04 00:44:27","post_modified":"2024-08-01 03:26:39","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/ai-infrastructure\/","post_excerpt":"Towards efficient AI\/ML deployment The AI Infrastructure team at Microsoft Research India works on cutting-edge systems optimizations for improving the efficiency of a variety of AI\/ML workloads, including an emerging class of workloads, namely, serving large language models (LLMs). AI\/ML models are expensive to train and serve at scale and therefore, systems optimizations are crucial for unlocking the true potential of AI-powered applications. The key principle behind many of our projects is co-design of Systems and…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/968667"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/968220"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/968220\/revisions"}],"predecessor-version":[{"id":968331,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/968220\/revisions\/968331"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=968220"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=968220"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=968220"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=968220"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=968220"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=968220"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=968220"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=968220"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=968220"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=968220"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=968220"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=968220"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=968220"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=968220"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=968220"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=968220"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}