{"id":976119,"date":"2023-10-12T20:59:53","date_gmt":"2023-10-13T03:59:53","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=976119"},"modified":"2023-10-13T08:54:59","modified_gmt":"2023-10-13T15:54:59","slug":"chanakya-learning-runtime-decisions-for-adaptive-real-time-perception","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/chanakya-learning-runtime-decisions-for-adaptive-real-time-perception\/","title":{"rendered":"Chanakya: Learning Runtime Decisions for Adaptive Real-Time Perception"},"content":{"rendered":"
Real-time perception requires planned resource utilization. Computational planning in real-time perception is governed by two considerations \u2013 accuracy and latency. There exist run-time decisions (e.g. choice of input resolution) that induce tradeoffs affecting performance on a given hardware, arising from intrinsic (content, e.g. scene clutter) and extrinsic (system, e.g. resource contention) characteristics. Earlier runtime execution frameworks employed rule-based decision algorithms and operated with a fixed algorithm latency budget to balance these concerns, which is sub-optimal and inflexible. We propose Chanakya, a learned approximate execution framework that naturally derives from the streaming perception paradigm, to automatically learn decisions induced by these tradeoffs instead. Chanakya is trained via novel rewards balancing accuracy and latency implicitly, without approximating both objectives. Chanakya simultaneously considers intrinsic and extrinsic context, and predicts decisions in a flexible manner. Chanakya, designed with low overhead in mind, outperforms state-of-the-art static and dynamic execution policies on public datasets on both server GPUs and edge devices.<\/p>\n","protected":false},"excerpt":{"rendered":"
Real-time perception requires planned resource utilization. Computational planning in real-time perception is governed by two considerations \u2013 accuracy and latency. There exist run-time decisions (e.g. choice of input resolution) that induce tradeoffs affecting performance on a given hardware, arising from intrinsic (content, e.g. scene clutter) and extrinsic (system, e.g. resource contention) characteristics. Earlier runtime execution […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13556,13562,13547],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246694,246688],"msr-conference":[259048],"msr-journal":[],"msr-impact-theme":[264846],"msr-pillar":[],"class_list":["post-976119","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-artificial-intelligence","msr-research-area-computer-vision","msr-research-area-systems-and-networking","msr-locale-en_us","msr-field-of-study-artificial-intelligence","msr-field-of-study-computer-vision"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2023-12-10","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/pdf\/2106.05665.pdf","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Anurag Ghosh","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Akshay Nambi","user_id":38169,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Akshay Nambi"},{"type":"text","value":"Vaibhav Balloli","user_id":0,"rest_url":false},{"type":"text","value":"Aditya Singh","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Tanuja Ganu","user_id":38883,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Tanuja Ganu"}],"msr_impact_theme":["Computing foundations"],"msr_research_lab":[199562],"msr_event":[968280],"msr_group":[144939,144784],"msr_project":[320399],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":{"projects":[{"ID":320399,"post_title":"HAMS: Harnessing AutoMobiles for Safety","post_name":"hams","post_type":"msr-project","post_date":"2016-11-12 07:23:49","post_modified":"2022-07-18 06:11:34","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/hams\/","post_excerpt":"In the Harnessing AutoMobiles for Safety (HAMS) project, we use low-cost sensing devices to construct a virtual harness for vehicles. The goal is to monitor the state of the driver and how the vehicle is being driven in the context of a road environment that the vehicle is in. We believe that effective monitoring leading to actionable feedback is key to promoting road safety.","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/320399"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/976119"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/976119\/revisions"}],"predecessor-version":[{"id":976122,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/976119\/revisions\/976122"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=976119"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=976119"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=976119"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=976119"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=976119"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=976119"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=976119"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=976119"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=976119"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=976119"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=976119"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=976119"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=976119"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=976119"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=976119"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=976119"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}