{"id":981852,"date":"2023-11-03T09:38:55","date_gmt":"2023-11-03T16:38:55","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=981852"},"modified":"2024-02-08T13:50:16","modified_gmt":"2024-02-08T21:50:16","slug":"generalized-gm-mds-polynomial-codes-are-higher-order-mds","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/generalized-gm-mds-polynomial-codes-are-higher-order-mds\/","title":{"rendered":"Generalized GM-MDS: Polynomial Codes are Higher Order MDS"},"content":{"rendered":"

The GM-MDS theorem, conjectured by Dau-Song-Dong-Yuen and proved by Lovett and Yildiz-Hassibi, shows that the generator matrices of Reed-Solomon codes can attain every possible configuration of zeros for an MDS code. The recently emerging theory of higher order MDS codes has connected the GM-MDS theorem to other important properties of Reed-Solomon codes, including showing that Reed-Solomon codes can achieve list decoding capacity, even over fields of size linear in the message length.
\nA few works have extended the GM-MDS theorem to other families of codes, including Gabidulin and skew polynomial codes. In this paper, we generalize all these previous results by showing that the GM-MDS theorem applies to any polynomial code, i.e., a code where the columns of the generator matrix are obtained by evaluating linearly independent polynomials at different points. We also show that the GM-MDS theorem applies to dual codes of such polynomial codes, which is non-trivial since the dual of a polynomial code may not be a polynomial code. More generally, we show that GM-MDS theorem also holds for algebraic codes (and their duals) where columns of the generator matrix are chosen to be points on some irreducible variety which is not contained in a hyperplane through the origin. Our generalization has applications to constructing capacity-achieving list-decodable codes as shown in a follow-up work by Brakensiek-Dhar-Gopi-Zhang, where it is proved that randomly punctured algebraic-geometric (AG) codes achieve list-decoding capacity over constant-sized fields.<\/p>\n","protected":false},"excerpt":{"rendered":"

The GM-MDS theorem, conjectured by Dau-Song-Dong-Yuen and proved by Lovett and Yildiz-Hassibi, shows that the generator matrices of Reed-Solomon codes can attain every possible configuration of zeros for an MDS code. The recently emerging theory of higher order MDS codes has connected the GM-MDS theorem to other important properties of Reed-Solomon codes, including showing that […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13546],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[260098],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-981852","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-computational-sciences-mathematics","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2023-10-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/abs\/2310.12888","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Joshua Brakensiek","user_id":0,"rest_url":false},{"type":"text","value":"Manik Dhar","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Sivakanth Gopi","user_id":37830,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Sivakanth Gopi"}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[437022],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/981852"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":2,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/981852\/revisions"}],"predecessor-version":[{"id":1005792,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/981852\/revisions\/1005792"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=981852"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=981852"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=981852"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=981852"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=981852"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=981852"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=981852"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=981852"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=981852"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=981852"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=981852"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=981852"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=981852"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=981852"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=981852"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=981852"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}