{"id":982032,"date":"2023-11-06T10:48:46","date_gmt":"2023-11-06T18:48:46","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=982032"},"modified":"2023-11-06T10:48:46","modified_gmt":"2023-11-06T18:48:46","slug":"convex-minimization-with-integer-minima-in-on4-time","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/convex-minimization-with-integer-minima-in-on4-time\/","title":{"rendered":"Convex Minimization with Integer Minima in O(n^4) Time"},"content":{"rendered":"

Given a convex function $f$ on $\\mathbb{R}^n$ with an integer minimizer, we show how to find an exact minimizer of $f$ using $O(n^2 \\log n)$ calls to a separation oracle and $O(n^4 \\log n)$ time. The previous best polynomial time algorithm for this problem given in [Jiang, SODA 2021, JACM 2022] achieves $O(n^2\\log\\log n\/\\log n)$ oracle complexity. However, the overall runtime of Jiang’s algorithm is at least $\\widetilde{\\Omega}(n^8)$, due to expensive sub-routines such as the Lenstra-Lenstra-Lov\\’asz (LLL) algorithm [Lenstra, Lenstra, Lov\\’asz, Math. Ann. 1982] and random walk based cutting plane method [Bertsimas, Vempala, JACM 2004]. Our significant speedup is obtained by a nontrivial combination of a faster version of the LLL algorithm due to [Neumaier, Stehl\\’e, ISSAC 2016] that gives similar guarantees, the volumetric center cutting plane method (CPM) by [Vaidya, FOCS 1989] and its fast implementation given in [Jiang, Lee, Song, Wong, STOC 2020].<\/p>\n

For the special case of submodular function minimization (SFM), our result implies a strongly polynomial time algorithm for this problem using $O(n^3 \\log n)$ calls to an evaluation oracle and $O(n^4 \\log n)$ additional arithmetic operations. Both the oracle complexity and the number of arithmetic operations of our more general algorithm are better than the previous best-known runtime algorithms for this specific problem given in [Lee, Sidford, Wong, FOCS 2015] and [Dadush, V\\’egh, Zambelli, SODA 2018, MOR 2021].<\/p>\n","protected":false},"excerpt":{"rendered":"

Given a convex function $f$ on $\\mathbb{R}^n$ with an integer minimizer, we show how to find an exact minimizer of $f$ using $O(n^2 \\log n)$ calls to a separation oracle and $O(n^4 \\log n)$ time. The previous best polynomial time algorithm for this problem given in [Jiang, SODA 2021, JACM 2022] achieves $O(n^2\\log\\log n\/\\log n)$ […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13561,13546],"msr-publication-type":[193716],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[],"msr-conference":[],"msr-journal":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-982032","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-algorithms","msr-research-area-computational-sciences-mathematics","msr-locale-en_us"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2024-1","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"ACM-SIAM","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"url","viewUrl":"false","id":"false","title":"https:\/\/arxiv.org\/pdf\/2304.03426.pdf","label_id":"243109","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"user_nicename","value":"Haotian Jiang","user_id":42528,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Haotian Jiang"},{"type":"user_nicename","value":"Yin Tat Lee","user_id":42684,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Yin Tat Lee"},{"type":"text","value":"Zhao Song","user_id":0,"rest_url":false},{"type":"text","value":"Lichen Zhang","user_id":0,"rest_url":false}],"msr_impact_theme":[],"msr_research_lab":[199565],"msr_event":[],"msr_group":[437022],"msr_project":[],"publication":[],"video":[],"download":[],"msr_publication_type":"inproceedings","related_content":[],"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/982032"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/982032\/revisions"}],"predecessor-version":[{"id":982035,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/982032\/revisions\/982035"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=982032"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=982032"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=982032"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=982032"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=982032"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=982032"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=982032"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=982032"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=982032"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=982032"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=982032"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=982032"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=982032"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=982032"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=982032"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=982032"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}