{"id":999297,"date":"2024-01-16T11:13:16","date_gmt":"2024-01-16T19:13:16","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-research-item&p=999297"},"modified":"2024-04-18T11:50:17","modified_gmt":"2024-04-18T18:50:17","slug":"towards-improved-power-management-in-cloud-gpus","status":"publish","type":"msr-research-item","link":"https:\/\/www.microsoft.com\/en-us\/research\/publication\/towards-improved-power-management-in-cloud-gpus\/","title":{"rendered":"Towards Improved Power Management in Cloud GPUs"},"content":{"rendered":"
As modern server GPUs are increasingly power intensive, better power management mechanisms can significantly reduce the power consumption, capital costs, and carbon emissions in large cloud datacenters. This letter uses diverse datacenter workloads to study the power management capabilities of modern GPUs. We find that current GPU management mechanisms have limited compatibility and monitoring support under cloud virtualization. They have sub-optimal, imprecise, and non-intuitive implementations of Dynamic Voltage and Frequency Scaling (DVFS) and power capping. Consequently, efficient GPU power management is not widely deployed in clouds today. To address these issues, we make actionable recommendations for GPU vendors and researchers.<\/p>\n","protected":false},"excerpt":{"rendered":"
As modern server GPUs are increasingly power intensive, better power management mechanisms can significantly reduce the power consumption, capital costs, and carbon emissions in large cloud datacenters. This letter uses diverse datacenter workloads to study the power management capabilities of modern GPUs. We find that current GPU management mechanisms have limited compatibility and monitoring support […]<\/p>\n","protected":false},"featured_media":0,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"msr-content-type":[3],"msr-research-highlight":[],"research-area":[13552],"msr-publication-type":[193715],"msr-product-type":[],"msr-focus-area":[],"msr-platform":[],"msr-download-source":[],"msr-locale":[268875],"msr-post-option":[],"msr-field-of-study":[246691],"msr-conference":[],"msr-journal":[268278],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-999297","msr-research-item","type-msr-research-item","status-publish","hentry","msr-research-area-hardware-devices","msr-locale-en_us","msr-field-of-study-computer-science"],"msr_publishername":"","msr_edition":"","msr_affiliation":"","msr_published_date":"2023-6-30","msr_host":"","msr_duration":"","msr_version":"","msr_speaker":"","msr_other_contributors":"","msr_booktitle":"","msr_pages_string":"","msr_chapter":"","msr_isbn":"","msr_journal":"","msr_volume":"22","msr_number":"","msr_editors":"","msr_series":"","msr_issue":"","msr_organization":"","msr_how_published":"","msr_notes":"","msr_highlight_text":"","msr_release_tracker_id":"","msr_original_fields_of_study":"","msr_download_urls":"","msr_external_url":"","msr_secondary_video_url":"","msr_longbiography":"","msr_microsoftintellectualproperty":1,"msr_main_download":"","msr_publicationurl":"","msr_doi":"","msr_publication_uploader":[{"type":"doi","viewUrl":"false","id":"false","title":"https:\/\/doi.org\/10.1109\/LCA.2023.3278652","label_id":"243106","label":0}],"msr_related_uploader":"","msr_attachments":[],"msr-author-ordering":[{"type":"text","value":"Pratyush Patel","user_id":0,"rest_url":false},{"type":"text","value":"Zibo Gong","user_id":0,"rest_url":false},{"type":"text","value":"S. Rizvi","user_id":0,"rest_url":false},{"type":"text","value":"Esha Choukse","user_id":0,"rest_url":false},{"type":"text","value":"Pulkit A. Misra","user_id":0,"rest_url":false},{"type":"text","value":"T. Anderson","user_id":0,"rest_url":false},{"type":"text","value":"Akshitha Sriraman","user_id":0,"rest_url":false},{"type":"user_nicename","value":"Esha Choukse","user_id":40417,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Esha Choukse"},{"type":"user_nicename","value":"Pulkit Misra","user_id":38496,"rest_url":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/microsoft-research\/v1\/researchers?person=Pulkit Misra"}],"msr_impact_theme":[],"msr_research_lab":[],"msr_event":[],"msr_group":[282170],"msr_project":[1017939],"publication":[],"video":[],"download":[],"msr_publication_type":"article","related_content":{"projects":[{"ID":1017939,"post_title":"Efficient AI","post_name":"efficient-ai","post_type":"msr-project","post_date":"2024-03-22 17:14:57","post_modified":"2024-09-06 14:53:30","post_status":"publish","permalink":"https:\/\/www.microsoft.com\/en-us\/research\/project\/efficient-ai\/","post_excerpt":"Making Azure's big bet possible Recent innovations in generative large language models (LLMs) have made their applications and use-cases ubiquitous. This has led to large-scale deployments of these models, using complex, expensive, and power-hungry AI accelerators, most commonly GPUs. These developments make LLM training and inference efficiency an important challenge. In the Azure Research - Systems (opens in new tab) group we are working on improving the Azure infrastructure including hardware, power, and serving. Check…","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-project\/1017939"}]}}]},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/999297"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-research-item"}],"version-history":[{"count":1,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/999297\/revisions"}],"predecessor-version":[{"id":999303,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-item\/999297\/revisions\/999303"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=999297"}],"wp:term":[{"taxonomy":"msr-content-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-content-type?post=999297"},{"taxonomy":"msr-research-highlight","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-research-highlight?post=999297"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=999297"},{"taxonomy":"msr-publication-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-publication-type?post=999297"},{"taxonomy":"msr-product-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-product-type?post=999297"},{"taxonomy":"msr-focus-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-focus-area?post=999297"},{"taxonomy":"msr-platform","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-platform?post=999297"},{"taxonomy":"msr-download-source","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-download-source?post=999297"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=999297"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=999297"},{"taxonomy":"msr-field-of-study","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-field-of-study?post=999297"},{"taxonomy":"msr-conference","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-conference?post=999297"},{"taxonomy":"msr-journal","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-journal?post=999297"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=999297"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=999297"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}