{"id":1132236,"date":"2025-02-25T13:02:52","date_gmt":"2025-02-25T21:02:52","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/?post_type=msr-video&p=1132236"},"modified":"2025-04-07T11:19:55","modified_gmt":"2025-04-07T18:19:55","slug":"using-llms-for-safe-low-level-programming-microsoft-research-forum","status":"publish","type":"msr-video","link":"https:\/\/www.microsoft.com\/en-us\/research\/video\/using-llms-for-safe-low-level-programming-microsoft-research-forum\/","title":{"rendered":"Using LLMs for safe low-level programming | Microsoft Research Forum"},"content":{"rendered":"\n
\"Research<\/figure>
\n

Presented by\u00a0Aseem Rastogi<\/a>\u00a0and Pantazis Deligiannis<\/a><\/em> at\u00a0<\/em>Microsoft Research Forum, Episode 5<\/strong><\/em><\/p>\n\n\n\n

Aseem Rastogi, Principal Researcher, and Pantazis Deligiannis, Principal Research Engineer from Microsoft Research FoSSE (Future of Scalable Software Engineering) discuss the technical results from ICSE’2025 on using Large Language Models (LLMs) for safe low-level programming. The results demonstrate LLMs inferring machine-checkable memory safety invariants in legacy C code, and how LLMs assist in fixing compilation errors in Rust codebases.<\/p>\n<\/div><\/div>\n\n\n\n

\n
Register for the series<\/a><\/div>\n\n\n\n
Other Episode 5 talks<\/a><\/div>\n\n\n\n
All previous talks<\/a><\/div>\n<\/div>\n\n\n\n
\n\t