{"id":184090,"date":"2005-06-17T00:00:00","date_gmt":"2009-10-31T13:22:09","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/support-vector-machines-for-structured-outputs\/"},"modified":"2016-09-09T09:49:28","modified_gmt":"2016-09-09T16:49:28","slug":"support-vector-machines-for-structured-outputs","status":"publish","type":"msr-video","link":"https:\/\/www.microsoft.com\/en-us\/research\/video\/support-vector-machines-for-structured-outputs\/","title":{"rendered":"Support Vector Machines for Structured Outputs"},"content":{"rendered":"
\n

Over the last decade, much of the research on discriminative learning has focused on problems like classification and regression, where the prediction is a single univariate variable. But what if we need to predict complex objects like trees, vectors, or orderings? Such problems arise, for example, when a natural language parser needs to predict the correct parse tree for a given sentence, when one needs to optimize a multivariate performance measure like the F1-score, or when a search engine needs to predict which ranking is best for a given query.<\/p>\n

This talk will discuss a support vector approach to predicting complex objects. It generalizes the idea of margins to complex prediction problems and a large range of loss functions. While the resulting training problems have exponential size, there is a simple algorithm that allows training in polynomial time. Empirical results will be given for several examples.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

Over the last decade, much of the research on discriminative learning has focused on problems like classification and regression, where the prediction is a single univariate variable. But what if we need to predict complex objects like trees, vectors, or orderings? Such problems arise, for example, when a natural language parser needs to predict the […]<\/p>\n","protected":false},"featured_media":195316,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"research-area":[],"msr-video-type":[],"msr-locale":[268875],"msr-post-option":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-184090","msr-video","type-msr-video","status-publish","has-post-thumbnail","hentry","msr-locale-en_us"],"msr_download_urls":"","msr_external_url":"https:\/\/youtu.be\/H23cUlC1hiA","msr_secondary_video_url":"","msr_video_file":"","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-video\/184090"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-video"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-video"}],"version-history":[{"count":0,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-video\/184090\/revisions"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media\/195316"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=184090"}],"wp:term":[{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=184090"},{"taxonomy":"msr-video-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-video-type?post=184090"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=184090"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=184090"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=184090"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=184090"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}