{"id":191215,"date":"2014-07-31T00:00:00","date_gmt":"2014-07-31T06:23:52","guid":{"rendered":"https:\/\/www.microsoft.com\/en-us\/research\/msr-research-item\/visual-nearest-neighbor-search\/"},"modified":"2016-07-15T15:18:31","modified_gmt":"2016-07-15T22:18:31","slug":"visual-nearest-neighbor-search","status":"publish","type":"msr-video","link":"https:\/\/www.microsoft.com\/en-us\/research\/video\/visual-nearest-neighbor-search\/","title":{"rendered":"Visual Nearest Neighbor Search"},"content":{"rendered":"
\n

Template Matching finds the best match in an image to a given template and this is used in a variety of computer vision applications. I will discuss several extensions to Template Matching. First, dealing with the case where we have millions of templates that we must match at once, second dealing with the case of RGBD images, where depth information is available and finally, presenting a fast algorithm for template matching under 2D affine transformations with global approximation guarantees. Joint work with Simon Korman, Yaron Eshet, Eyal Ofek, Gilad Tsur and Daniel Reichman.<\/p>\n<\/div>\n

<\/p>\n","protected":false},"excerpt":{"rendered":"

Template Matching finds the best match in an image to a given template and this is used in a variety of computer vision applications. I will discuss several extensions to Template Matching. First, dealing with the case where we have millions of templates that we must match at once, second dealing with the case of […]<\/p>\n","protected":false},"featured_media":198519,"template":"","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"research-area":[],"msr-video-type":[],"msr-locale":[268875],"msr-post-option":[],"msr-impact-theme":[],"msr-pillar":[],"class_list":["post-191215","msr-video","type-msr-video","status-publish","has-post-thumbnail","hentry","msr-locale-en_us"],"msr_download_urls":"","msr_external_url":"https:\/\/youtu.be\/Al2pIZ4g8mw","msr_secondary_video_url":"","msr_video_file":"","_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-video\/191215"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-video"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/msr-video"}],"version-history":[{"count":0,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-video\/191215\/revisions"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media\/198519"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=191215"}],"wp:term":[{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=191215"},{"taxonomy":"msr-video-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-video-type?post=191215"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=191215"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=191215"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=191215"},{"taxonomy":"msr-pillar","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-pillar?post=191215"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}