<\/a>Figure 3: GLUE test results<\/p><\/div>\n
Release news<\/h3>\n
Microsoft plans to release the distilled MT-DNN package in June 2019 to the public at https:\/\/github.com\/namisan\/mt-dnn. The release package contains the pretrained models, the source code and the Readme that describes step by step how to reproduce the results reported in the paper. We welcome your comments and feedback and look forward to future developments!<\/p>\n
Acknowledgements<\/h3>\n
This research was conducted by Xiaodong Liu, Pengcheng He, Weizhu Chen and Jianfeng Gao. Additional thanks go to Asli Celikyilmaz, Xuedong Huang, Moontae Lee, Chunyuan Li, Xiujun Li, and Michael Patterson for their helpful discussions and comments.<\/p>\n","protected":false},"excerpt":{"rendered":"
Language Representation Learning maps symbolic natural language texts (for example, words, phrases and sentences) to semantic vectors. Robust and universal language representations are crucial to achieving state-of-the-art results on many Natural Language Processing (NLP) tasks. Ensemble learning is one of the most effective approaches for improving model generalization and has been used to achieve new […]<\/p>\n","protected":false},"author":38022,"featured_media":588010,"comment_status":"closed","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"categories":[243622],"tags":[],"research-area":[13545],"msr-region":[],"msr-event-type":[],"msr-locale":[268875],"msr-post-option":[],"msr-impact-theme":[],"msr-promo-type":[],"msr-podcast-series":[],"class_list":["post-587071","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-human-language-technologies","msr-research-area-human-language-technologies","msr-locale-en_us"],"msr_event_details":{"start":"","end":"","location":""},"podcast_url":"","podcast_episode":"","msr_research_lab":[],"msr_impact_theme":[],"related-publications":[],"related-downloads":[],"related-videos":[],"related-academic-programs":[],"related-groups":[144736],"related-projects":[],"related-events":[],"related-researchers":[],"msr_type":"Post","featured_image_thumbnail":"","byline":"","formattedDate":"May 16, 2019","formattedExcerpt":"Language Representation Learning maps symbolic natural language texts (for example, words, phrases and sentences) to semantic vectors. Robust and universal language representations are crucial to achieving state-of-the-art results on many Natural Language Processing (NLP) tasks. Ensemble learning is one of the most effective approaches for…","locale":{"slug":"en_us","name":"English","native":"","english":"English"},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/posts\/587071"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/users\/38022"}],"replies":[{"embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/comments?post=587071"}],"version-history":[{"count":7,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/posts\/587071\/revisions"}],"predecessor-version":[{"id":588049,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/posts\/587071\/revisions\/588049"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media\/588010"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=587071"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/categories?post=587071"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/tags?post=587071"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=587071"},{"taxonomy":"msr-region","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-region?post=587071"},{"taxonomy":"msr-event-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-event-type?post=587071"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=587071"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=587071"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=587071"},{"taxonomy":"msr-promo-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-promo-type?post=587071"},{"taxonomy":"msr-podcast-series","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-podcast-series?post=587071"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}