Figure 3: The complete SpaceEvo process and application for NAS<\/figcaption><\/figure>\n\n\n\nExtensive experiments on two real-world edge devices and ImageNet demonstrated that our automatically designed search spaces significantly surpass manually designed search spaces. Table 1 showcases our discovered models, SEQnet, setting new benchmarks for INT8 quantized accuracy-latency tradeoffs. <\/p>\n\n\n\n(a) Results on the Intel VNNI CPU with onnxruntime<\/strong><\/td><\/tr>Model<\/td> Top-1 Acc %<\/td> Latency<\/td> Top-1 Acc %<\/td> FLOPs<\/td><\/tr> INT8<\/td> INT8<\/td> Speedup<\/td> FP32<\/td><\/tr> MobileNetV3Small<\/td> 66.3<\/td> 4.4 ms<\/td> 1.1x<\/td> 67.4<\/td> 56M<\/td><\/tr> SEQnet@cpu-A0<\/strong><\/td>74.7<\/strong><\/td>4.4 ms<\/strong><\/td>2.0x<\/strong><\/td>74.8<\/strong><\/td>163M<\/td><\/tr> MobileNetV3Large<\/td> 74.5<\/td> 10.3 ms<\/td> 1.5x<\/td> 75.2<\/td> 219M<\/td><\/tr> SEQnet@cpu-A1<\/strong><\/td>77.4<\/strong><\/td>8.8 ms<\/strong><\/td>2.4x<\/strong><\/td>77.5<\/strong><\/td>358M<\/td><\/tr> FBNetV3-A<\/td> 78.2<\/td> 27.7 ms<\/td> 1.3x<\/td> 79.1<\/td> 357M<\/td><\/tr> SEQnet@cpu-A4<\/strong><\/td>80.0<\/strong><\/td>24.4 ms<\/strong><\/td>2.4x<\/strong><\/td>80.1<\/strong><\/td>1267M<\/td><\/tr> (b) Results on the Google Pixel 4 with TFLite<\/strong><\/td><\/tr>MobileNetV3Small<\/td> 66.3<\/td> 6.4 ms<\/td> 1.3x<\/td> 67.4<\/td> 56M<\/td><\/tr> SEQnet@pixel4-A0<\/strong><\/td>73.6<\/strong><\/td>5.9 ms<\/strong><\/td>2.1x<\/strong><\/td>73.7<\/strong><\/td>107M<\/td><\/tr> MobileNetV3Large<\/td> 74.5<\/td> 15.7 ms<\/td> 1.5x<\/td> 75.2<\/td> 219M<\/td><\/tr> EfficientNet-B0<\/td> 76.7<\/td> 36.4 ms<\/td> 1.7x<\/td> 77.3<\/td> 390M<\/td><\/tr> SEQnet@pixel4-A1<\/strong><\/td>77.6<\/strong><\/td>14.7 ms<\/strong><\/td>2.2x<\/strong><\/td>77.7<\/strong><\/td>274M<\/td><\/tr><\/tbody><\/table>Table 1. Our automated search spaces outperformed manual ones in ImageNet results on two devices. Speedup: INT8 latency compared with FP32 inference.<\/center><\/figcaption><\/figure>\n\n\n\nPotential for sustainable and efficient computing<\/h2>\n\n\n\n SpaceEvo is the first attempt to address the hardware-friendly search space optimization challenge in NAS, paving the way for designing effective low-latency DNN models for diverse real-world edge devices. Looking ahead, the implications of SpaceEvo reach far beyond its initial achievements. Its potential extends to applications for other crucial deployment metrics, such as energy and memory consumption, enhancing the sustainability of edge computing solutions.<\/p>\n\n\n\n
We are exploring adapting these methods to support diverse model architectures like transformers, further expanding its role in evolving deep learning model design and efficient deployment.<\/p>\n","protected":false},"excerpt":{"rendered":"
A persistent challenge in deep learning is optimizing neural network models for diverse hardware configurations, balancing performance and low latency. Learn how SpaceEvo automates hardware-aware neural architecture search to fine-tune DNN models for swift execution on diverse devices.<\/p>\n","protected":false},"author":42183,"featured_media":972249,"comment_status":"closed","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"msr-url-field":"","msr-podcast-episode":"","msrModifiedDate":"","msrModifiedDateEnabled":false,"ep_exclude_from_search":false,"_classifai_error":"","footnotes":""},"categories":[1],"tags":[],"research-area":[13556,13547],"msr-region":[],"msr-event-type":[],"msr-locale":[268875],"msr-post-option":[],"msr-impact-theme":[],"msr-promo-type":[],"msr-podcast-series":[],"class_list":["post-971391","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-research-blog","msr-research-area-artificial-intelligence","msr-research-area-systems-and-networking","msr-locale-en_us"],"msr_event_details":{"start":"","end":"","location":""},"podcast_url":"","podcast_episode":"","msr_research_lab":[199560],"msr_impact_theme":[],"related-publications":[],"related-downloads":[],"related-videos":[],"related-academic-programs":[],"related-groups":[881388,920469],"related-projects":[],"related-events":[],"related-researchers":[{"type":"user_nicename","value":"Li Lyna Zhang","user_id":38121,"display_name":"Li Lyna Zhang","author_link":"Li Lyna Zhang<\/a>","is_active":false,"last_first":"Zhang, Li Lyna","people_section":0,"alias":"lzhani"},{"type":"user_nicename","value":"Jiahang Xu","user_id":41569,"display_name":"Jiahang Xu","author_link":" Jiahang Xu<\/a>","is_active":false,"last_first":"Xu, Jiahang","people_section":0,"alias":"jiahangxu"},{"type":"user_nicename","value":"Yuqing Yang","user_id":40654,"display_name":"Yuqing Yang","author_link":" Yuqing Yang<\/a>","is_active":false,"last_first":"Yang, Yuqing","people_section":0,"alias":"yuqyang"},{"type":"user_nicename","value":"Ting Cao","user_id":37446,"display_name":"Ting Cao","author_link":" Ting Cao<\/a>","is_active":false,"last_first":"Cao, Ting","people_section":0,"alias":"ticao"},{"type":"user_nicename","value":"Mao Yang","user_id":32798,"display_name":"Mao Yang","author_link":" Mao Yang<\/a>","is_active":false,"last_first":"Yang, Mao","people_section":0,"alias":"maoyang"}],"msr_type":"Post","featured_image_thumbnail":" ","byline":"","formattedDate":"October 6, 2023","formattedExcerpt":"A persistent challenge in deep learning is optimizing neural network models for diverse hardware configurations, balancing performance and low latency. Learn how SpaceEvo automates hardware-aware neural architecture search to fine-tune DNN models for swift execution on diverse devices.","locale":{"slug":"en_us","name":"English","native":"","english":"English"},"_links":{"self":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/posts\/971391"}],"collection":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/users\/42183"}],"replies":[{"embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/comments?post=971391"}],"version-history":[{"count":26,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/posts\/971391\/revisions"}],"predecessor-version":[{"id":972321,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/posts\/971391\/revisions\/972321"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media\/972249"}],"wp:attachment":[{"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/media?parent=971391"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/categories?post=971391"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/tags?post=971391"},{"taxonomy":"msr-research-area","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/research-area?post=971391"},{"taxonomy":"msr-region","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-region?post=971391"},{"taxonomy":"msr-event-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-event-type?post=971391"},{"taxonomy":"msr-locale","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-locale?post=971391"},{"taxonomy":"msr-post-option","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-post-option?post=971391"},{"taxonomy":"msr-impact-theme","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-impact-theme?post=971391"},{"taxonomy":"msr-promo-type","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-promo-type?post=971391"},{"taxonomy":"msr-podcast-series","embeddable":true,"href":"https:\/\/www.microsoft.com\/en-us\/research\/wp-json\/wp\/v2\/msr-podcast-series?post=971391"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}