Alex Esibov, Author at Microsoft Security Blog http://approjects.co.za/?big=en-us/security/blog Expert coverage of cybersecurity topics Tue, 26 Sep 2023 16:39:57 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.2 Modernize secure access for your on-premises resources with Zero Trust http://approjects.co.za/?big=en-us/security/blog/2020/11/19/modernize-secure-access-for-your-on-premises-resources-with-zero-trust/ Thu, 19 Nov 2020 19:00:41 +0000 Change came quickly in 2020. More likely than not, a big chunk of your workforce has been forced into remote access. And with remote work came an explosion of bring-your-own-device (BYOD) scenarios, requiring your organization to extend the bounds of your network to include the entire internet (and the added security risks that come with […]

The post Modernize secure access for your on-premises resources with Zero Trust appeared first on Microsoft Security Blog.

]]>
Change came quickly in 2020. More likely than not, a big chunk of your workforce has been forced into remote access. And with remote work came an explosion of bring-your-own-device (BYOD) scenarios, requiring your organization to extend the bounds of your network to include the entire internet (and the added security risks that come with it).

At this year’s Microsoft Ignite, we demonstrated how to bring your legacy on-premises resources into a Zero Trust security model that provides seamless access to all—SaaS, IaaS, PaaS, and on-premises—with a global presence and no extra steps to remember. You’re invited to watch our full presentation and review the highlights below.

The new decentralized workplace

Organizations that steadfastly relied on the “flat network” approach of firewalls and VPNs to regulate access now find themselves lacking the visibility, solution integration, and agility needed to deliver end-to-end security. A new model needed to adapt to a remote workforce, protecting people, devices, applications, and data—from anywhere.

Legacy access model

Figure 1: Legacy access model

In a Zero Trust security model, every access request is strongly inspected for anomalies before granting access. Everything from the user’s identity to the application’s hosting environment is authenticated and authorized using micro-segmentation and least privileged-access principles to minimize lateral movement.

Zero Trust means adhering to three cohesive principles:

  • Verify explicitly: Always authenticate and authorize based on all available data points, including—user identity, location, device health, service or workload, data classification, and anomalies.
  • Use least privileged access: Limit user access with just-in-time (JIT) and just-enough-access (JEA), risk-based adaptive polices, and data protection to help secure both data and productivity.
  • Assume breach: Minimize the blast radius and prevent lateral movement by segmenting access by network, user, devices, and app awareness. Verify all sessions are encrypted and use analytics to gain visibility, drive threat detection, and improve defenses.

Microsoft Zero Trust model

Figure 2: Microsoft Zero Trust model

In the diagram above, you can see how access is unified across users, devices, and networks; all the various conditions that feed into the risk of a session. Acting as a gateway, the access policy is unified across your resources—SaaS, IaaS, PaaS, on-premises, or in the cloud. This is true whether it’s Azure, Amazon Web services (AWS), Google Cloud Platform (GCP) or some other cloud. In the event of a breach, rich intelligence, and analytics help us identify what happened and how to prevent it from happening again.

Cybersecurity for our time

The right security solution for our new perimeterless workplace employs the principles of Zero Trust, allowing users access only to the specific applications they need rather than the entire network. Because Zero Trust access is tied to the user’s identity, it allows IT departments to quickly onboard new and remote users, often on non-corporate devices, scoping permissions appropriately.

A cybersecurity model for today’s digital estate should include:

For the end-user:

  • Access to all resources: SaaS, IaaS, PaaS, on-premises.
  • Seamless experience: No extra steps or unique URLs to remember.
  • Great performance: Proxy services should have a global presence and use geo-location.

For the security/IT admin:

  • Segmentation by app, not network.
  • Adaptive access based on the principles of Zero Trust.
  • Reduce infrastructure complexity and maintenance.

Connect apps to an identity based, secure access solution

With Microsoft Azure Active Directory (Azure AD), it’s easy to connect all your applications through a single identity-based control plane. When it comes to cloud apps, Azure AD supports standard authentication modes such as Security Assertion Markup Language (SAML) and OpenID Connect (OIDC). To accommodate new apps your organization may be developing, Azure AD also provides tools and software development kits (SDK) to help you integrate these as well.

Figure 3: Microsoft Azure Active Directory

When it comes to classic or on-premises applications, Azure AD Application Proxy enables your security team to easily apply the same policies and security controls used for cloud apps to your on-premises apps. All that’s needed is to install a lightweight agent called a connector onto your Windows server, allowing a connection point to your on-premises network. In this way, one connector group can be configured to serve multiple back-end applications, giving you the freedom to architect a truly micro-segmented solution.

Azure Active Directory Application Proxy

Figure 4: Azure Active Directory Application Proxy

Azure AD Application Proxy Connectors use outbound connections as well; meaning, no additional inbound firewall rules need to be opened. Also, it doesn’t require placement in a demilitarized zone (DMZ), as was the case with the legacy Purdue Model. Your apps won’t need to change, and Azure AD Application Proxy also supports multiple authentication modes; so your users can still get a single sign-on (SSO) experience. Users can then access the app from an external URL using any device—no VPN required.

Azure AD pre-authenticates every request, ensuring that only verified traffic ever gets to your app; thus giving you another layer of protection. In addition, any conditional access policies you’ve set up can be enforced at that point.

Protecting you in real-time

Microsoft Cloud App Security integrates natively with Azure AD conditional access to extend real-time security into the session for both your cloud and on-premises applications. This native Microsoft solution stack ensures that your on-premises applications will still boot up quickly and look the same. The difference is you’re now able to control granular actions, such as uploads, downloads, and cut, copy, and paste, based on the sensitivity of the data. For example, users accessing an on-premises instance of Team Foundation Server (TFS) through the App Proxy can use Cloud App Security to enable developers to make code changes but block their ability to download files onto an unmanaged device. Many other scenarios are supported like, blocking malware in file upload attempts to ensure that your on-premises infrastructure remains secure.

Malware detection screen

Figure 5: Malware detection screen

See what else Azure AD and Microsoft Cloud App Security can do

At Microsoft, we believe that tight integration between identity and security is pivotal to your Zero Trust strategy, and we are constantly innovating in this area. To see some of the existing capabilities described in this blog come to life, watch the archived presentation for demonstrations of the powerful capabilities that Microsoft identity and security tools enable for your on-premises applications. Learn how you can easily set controls to allow or block access, require a password reset, block legacy authorization, require multifactor authentication, control sessions in real-time, and more.

To learn more about Microsoft Security solutions visit our website.  Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity.

The post Modernize secure access for your on-premises resources with Zero Trust appeared first on Microsoft Security Blog.

]]>
Microsoft Zero Trust deployment guide for your applications http://approjects.co.za/?big=en-us/security/blog/2020/08/27/zero-trust-deployment-guide-microsoft-applications/ Thu, 27 Aug 2020 18:00:21 +0000 Leverage Microsoft Cloud App Security to secure your digital transformation, by protecting all your apps and resources with the principles of Zero Trust.

The post Microsoft Zero Trust deployment guide for your applications appeared first on Microsoft Security Blog.

]]>
Introduction

More likely than not, your organization is in the middle of a digital transformation characterized by increased adoption of cloud apps and increased demand for mobility. In the age of remote work, users expect to be able to connect to any resource, on any device, from anywhere in the world. IT admins, in turn, are expected to securely enable their users’ productivity, often without changing the infrastructure of their existing solutions. For many organizations, with resources spread across multiple clouds, as well as on-prem, this means supporting complex hybrid deployments.

In this guide, we will focus on how to deploy and configure Microsoft Cloud App Security to apply Zero Trust principles across the app ecosystem, regardless of where those apps reside. Deploying Cloud App Security can save customers significant time, resources, and of course, improve their security posture. We will simplify this deployment, focusing on a few simple steps to get started, and then stepping through more advanced monitoring and controls. Specifically, we’ll walk through the discovery of Shadow IT, ensuring appropriate in-app permissions are enforced, gating access based on real-time analytics, monitoring for abnormal behavior based on real-time UEBA, controlling user interactions with data, and assessing the cloud security posture of an organization.

Getting started

Your Zero Trust journey for apps starts with understanding the app ecosystem your employees are using, locking down shadow IT, and managing user activities, data, and threats in the business-critical applications that your workforce leverages to be productive.

Discover and control the use of Shadow IT

The total number of apps accessed by employees in the average enterprise exceeds 1,500. That equates to more than 80 GB of data uploaded monthly to various apps, less than 15% of which are managed by their IT department. And as remote work becomes a reality for most, it’s no longer enough to apply access policies to only your network appliance.

To get started discovering and assessing cloud apps, set up Cloud Discovery in Microsoft Cloud App Security, and analyze your traffic logs against a rich cloud app catalog of over 16,000 cloud apps. Apps are ranked and scored based on more than 90 risk factors to help assess the risk Shadow IT poses to your organization.

Once this risk is understood, each individual application can be evaluated, manually or via policy, to determine what action to take. The following decision tree shows potential actions that can be taken, based on whether the applications’ risk is deemed acceptable. Sanctioned applications can then be onboarded with your identity provider to enable centralized management and more granular control, while unsanctioned applications can be blocked by your network appliance or at the machine-level with one-click by leveraging Microsoft Defender ATP.

An image of the management of the lifecycle of a discovered app.

Monitor user activities and data

Once applications are discovered, one of the next steps for sanctioned apps is to connect them via API to gain deep visibility into those applications – after all, these are the apps where your most sensitive data resides. Microsoft Cloud App Security uses enterprise-grade cloud app APIs to provide instant visibility and governance for each cloud app being used.

Connect your business critical cloud applications, ranging from Office 365 to Salesforce, Box, AWS, GCP, and more, to Microsoft Cloud App Security to gain deep visibility into the actions, files, and accounts that your users touch day-in and day-out. Leverage these enterprise-grade API connections to enable the admin to perform governance actions, such as quarantining files or suspending users, as well as mitigate against any flagged risk.

Automate data protection and governance

For an organization that is constantly growing and evolving, the power of automation cannot be overstated. Once your apps are connected to Microsoft Cloud App Security, you can leverage versatile policies to detect risky behavior and violations, and automate actions to remediate those violations.

Microsoft Cloud App Security provides built-in policies for both risky activities and sensitive files, as well as the ability to create custom policies as needed, based on your own environment. For example, if a user forgets to label sensitive data appropriately before uploading it to the cloud, you can automate the application of the correct label by leveraging Microsoft Cloud App Security to scan the file, whether that app is hosted in a Microsoft or non-Microsoft cloud. In addition, more likely than not, guests or partner users are collaborating with you in your sensitive applications. You can set automatic actions to expire a shared link or removing external users while informing the file owner.

Protect against cyber threats and rogue apps

Connecting your apps enables you to automate data and access governance, but it also enables detecting and remediating against cyberthreats and rogue apps. Attackers closely monitor where sensitive information is most likely to end up and develop dedicated and unique attack tools, techniques, and procedures, such as illicit OAuth consent grants and cloud ransomware.

Microsoft Cloud App Security provides rich behavioral analytics and anomaly detections to help organizations securely adopt the cloud by providing malware protection, OAuth app protection, and comprehensive incident investigation and remediation. Because these are already enabled, you do not need to configure them. However, we recommend logging into your Cloud App Security portal to fine-tune them based on your environment (Click on Control, then Policies and select Anomaly detection policy).

Cloud App Security’s user and entity behavioral analytics (UEBA) and machine learning (ML) capabilities are enabled out-of-the-box so that you can immediately detect threats and run advanced threat detection across your cloud environment. Because they’re automatically enabled, new anomaly detection policies provide immediate results by providing immediate detections, targeting numerous security use cases such as impossible travel, suspicious inbox rules and ransomware across your users and the machines and devices connected to your network. In addition, the policies expose more data from the Cloud App Security detection engine and can be refined to help you speed up the investigation process and contain ongoing threats.

Configuring Advanced Controls

You’ve now assessed your cloud environment, unsanctioned dangerous and risky applications, and added automation to protect your sensitive corporate resources in your business-critical applications. Getting advanced means extending those security controls by deploying adaptive access controls that match the risk of each individual session and assessing and patching the security posture of your multi-cloud environments.

Deploy adaptive access and session controls for all apps

In today’s modern and dynamic workplace, it’s not enough to know what’s happening in your cloud environment after the fact. Stopping breaches and leaks in real-time before employees intentionally or inadvertently put data and organizations at risk is key. Simultaneously, it’s business-critical to enable users to securely use their own devices productively.

Enable real-time monitoring and control over access to any of your apps with Microsoft Cloud App Security access and session policies, including cloud and on-prem apps and resources hosted by the Azure AD App Proxy. For example, you can create policies to protect the download of sensitive content when using any unmanaged device. Alternatively, files can be scanned on upload to detect potential malware and block them from entering sensitive cloud environments.

An image displaying how to extend policy enforcement into the session.

Assess the security posture of your cloud environments

Beyond SaaS applications, organizations are heavily investing in IaaS and PaaS services. Microsoft Cloud App Security goes beyond SaaS security to enable organizations to assess and strengthen their security posture and Zero Trust capabilities for major clouds, such as Azure, Amazon Web Services, and Google Cloud Platform. These assessments focus on detailing the security configuration and compliance status across each cloud platform. In turn, you can limit the risk of a security breach, by keeping the cloud platforms compliant with your organizational configuration policy and regulatory compliance, following the CIS benchmark, or the vendor’s best practices for a secure configuration.

Microsoft Cloud App Security’s cloud platform security provides tenant-level visibility into all your Azure subscriptions, AWS accounts, and GCP projects. Getting an overview of the security configuration posture of your multi-cloud platform from a single location enables a comprehensive risk-based investigation across all your resources. The security configuration dashboard can then be used to drive remediation actions and minimize risk across all your cloud environments. View the security configuration assessments for AzureAWS, and GCP recommendations in Cloud App Security to investigate and remediate against any gaps.

More Zero Trust deployment guides to come

We hope this blog helps you deploy and successfully incorporate apps into your Zero Trust strategy. Make sure to check out the other deployment guides in the series by following the Microsoft Security blog to keep up with our expert coverage on security matters. For more information on Microsoft Security Solutions  visit our website. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity.

The post Microsoft Zero Trust deployment guide for your applications appeared first on Microsoft Security Blog.

]]>
Traditional perimeter-based network defense is obsolete—transform to a Zero Trust model http://approjects.co.za/?big=en-us/security/blog/2019/10/23/perimeter-based-network-defense-transform-zero-trust-model/ Wed, 23 Oct 2019 19:00:33 +0000 Digital transformation has made the traditional perimeter-based network defense obsolete. A new white paper helps you understand the core principles of a Zero Trust approach.

The post Traditional perimeter-based network defense is obsolete—transform to a Zero Trust model appeared first on Microsoft Security Blog.

]]>
Digital transformation has made the traditional perimeter-based network defense obsolete. Your employees and partners expect to be able to collaborate and access organizational resources from anywhere, on virtually any device, without impacting their productivity. Customers expect personalized experiences that demonstrate you understand them and can adapt quickly to their evolving interests. Companies need to be able to move with agility, adapting quickly to changing market conditions and take advantage of new opportunities. Companies embracing this change are thriving, leaving those who don’t in their wake.

As organizations drive their digital transformation efforts, it quickly becomes clear that the approach to securing the enterprise needs to be adapted to the new reality. The security perimeter is no longer just around the on-premises network. It now extends to SaaS applications used for business critical workloads, hotel and coffee shop networks your employees are using to access corporate resources while traveling, unmanaged devices your partners and customers are using to collaborate and interact with, and IoT devices installed throughout your corporate network and inside customer locations. The traditional perimeter-based security model is no longer enough.

The traditional firewall (VPN security model) assumed you could establish a strong perimeter, and then trust that activities within that perimeter were “safe.” The problem is today’s digital estates typically consist of services and endpoints managed by public cloud providers, devices owned by employees, partners, and customers, and web-enabled smart devices that the traditional perimeter-based model was never built to protect. We’ve learned from both our own experience, and the customers we’ve supported in their own journeys, that this model is too cumbersome, too expensive, and too vulnerable to keep going.

We can’t assume there are “threat free” environments. As we digitally transform our companies, we need to transform our security model to one which assumes breach, and as a result, explicitly verifies activities and automatically enforces security controls using all available signal and employs the principle of least privilege access. This model is commonly referred to as “Zero Trust.”

Today, we’re publishing a new white paper to help you understand the core principles of Zero Trust along with a maturity model, which breaks down requirements across the six foundational elements, to help guide your digital transformation journey.

Download the Microsoft Zero Trust Maturity Model today!

Learn more about Zero Trust and Microsoft Security.

Also, bookmark the Security blog to keep up with our expert coverage on security matters. And follow us at @MSFTSecurity for the latest news and updates on cybersecurity.

To learn more about how you can protect your time and empower your team, check out the cybersecurity awareness page this month.

 

The post Traditional perimeter-based network defense is obsolete—transform to a Zero Trust model appeared first on Microsoft Security Blog.

]]>