Microsoft Defender for Cloud Apps News and Insights | Microsoft Security Blog http://approjects.co.za/?big=en-us/security/blog/products/microsoft-defender-for-cloud-apps/ Expert coverage of cybersecurity topics Fri, 08 Nov 2024 15:08:31 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.2 Chinese threat actor Storm-0940 uses credentials from password spray attacks from a covert network http://approjects.co.za/?big=en-us/security/blog/2024/10/31/chinese-threat-actor-storm-0940-uses-credentials-from-password-spray-attacks-from-a-covert-network/ Thu, 31 Oct 2024 17:00:00 +0000 Since August 2023, Microsoft has observed intrusion activity targeting and successfully stealing credentials from multiple Microsoft customers that is enabled by highly evasive password spray attacks. Microsoft has linked the source of these password spray attacks to a network of compromised devices we track as CovertNetwork-1658, also known as xlogin and Quad7 (7777). Microsoft is […]

The post Chinese threat actor Storm-0940 uses credentials from password spray attacks from a covert network appeared first on Microsoft Security Blog.

]]>
Since August 2023, Microsoft has observed intrusion activity targeting and successfully stealing credentials from multiple Microsoft customers that is enabled by highly evasive password spray attacks. Microsoft has linked the source of these password spray attacks to a network of compromised devices we track as CovertNetwork-1658, also known as xlogin and Quad7 (7777). Microsoft is publishing this blog on how covert networks are used in attacks, with the goal of increasing awareness, improving defenses, and disrupting related activity against our customers.

Microsoft assesses that credentials acquired from CovertNetwork-1658 password spray operations are used by multiple Chinese threat actors. In particular, Microsoft has observed the Chinese threat actor Storm-0940 using credentials from CovertNetwork-1658. Active since at least 2021, Storm-0940 obtains initial access through password spray and brute-force attacks, or by exploiting or misusing network edge applications and services. Storm-0940 is known to target organizations in North America and Europe, including think tanks, government organizations, non-governmental organizations, law firms, defense industrial base, and others.

As with any observed nation-state threat actor activity, Microsoft has directly notified targeted or compromised customers, providing them with important information needed to help secure their environments. In this blog, we provide more information about CovertNetwork-1658 infrastructure, and associated Storm-0940 activity. We also share mitigation recommendations, detection information, and hunting queries that can help organizations identify, investigate, and mitigate associated activity.

What is CovertNetwork-1658?

Microsoft tracks a network of compromised small office and home office (SOHO) routers as CovertNetwork-1658. SOHO routers manufactured by TP-Link make up most of this network. Microsoft uses “CovertNetwork” to refer to a collection of egress IPs consisting of compromised or leased devices that may be used by one or more threat actors.

CovertNetwork-1658 specifically refers to a collection of egress IPs that may be used by one or more Chinese threat actors and is wholly comprised of compromised devices. Microsoft assesses that a threat actor located in China established and maintains this network. The threat actor exploits a vulnerability in the routers to gain remote code execution capability. We continue to investigate the specific exploit by which this threat actor compromises these routers. Microsoft assesses that multiple Chinese threat actors use the credentials acquired from CovertNetwork-1658 password spray operations to perform computer network exploitation (CNE) activities.

Post-compromise activity on compromised routers

After successfully gaining access to a vulnerable router, in some instances, the following steps are taken by the threat actor to prepare the router for password spray operations:

  1. Download Telnet binary from a remote File Transfer Protocol (FTP) server
  2. Download xlogin backdoor binary from a remote FTP server
  3. Utilize the downloaded Telnet and xlogin binaries to start an access-controlled command shell on TCP port 7777
  4. Connect and authenticate to the xlogin backdoor listening on TCP port 7777
  5. Download a SOCKS5 server binary to router
  6. Start SOCKS5 server on TCP port 11288
A diagram presenting the steps taken to prepare the router for password operations.
Figure 1. Steps taken to prepare the router for password spray operations  

CovertNetwork-1658 is observed conducting their password spray campaigns through this proxy network to ensure the password spray attempts originate from the compromised devices.

Password spray activity from CovertNetwork-1658 infrastructure

Microsoft has observed multiple password spray campaigns originating from CovertNetwork-1658 infrastructure. In these campaigns, CovertNetwork-1658 submits a very small number of sign-in attempts to many accounts at a target organization. In about 80 percent of cases, CovertNetwork-1658 makes only one sign-in attempt per account per day. Figure 2 depicts this distribution in greater detail.

Column chart showing number of sign-in attempts from CovertNetwork-1658
Figure 2. CovertNetwork-1658 count of sign-in attempts per account per day.

CovertNetwork-1658 infrastructure is difficult to monitor due to the following characteristics:

  • The use of compromised SOHO IP addresses
  • The use of a rotating set of IP addresses at any given time. The threat actors had thousands of available IP addresses at their disposal. The average uptime for a CovertNetwork-1658 node is approximately 90 days.
  • The low-volume password spray process; for example, monitoring for multiple failed sign-in attempts from one IP address or to one account will not detect this activity

Various security vendors have reported on CovertNetwork-1658 activities, including Sekoia (July 2024) and Team Cymru (August 2024). Microsoft assesses that after these blogs were published, the usage of CovertNetwork-1658 network has declined substantially. The below chart highlights a steady and steep decline in the use of CovertNetwork-1658’s original infrastructure since their activities have been exposed in public reporting as observed in Censys.IO data.

A column chart presenting the downward trend of CovertNetwork-1658's available nodes from August to October 2024
Figure 3. Chart showing the drop in CovertNetwork-1658’s available nodes between August 1, 2024 and October 29, 2024

Microsoft assesses that CovertNetwork-1658 has not stopped operations as indicated in recent activity but is likely acquiring new infrastructure with modified fingerprints from what has been publicly disclosed. An observed increase in recent activity may be early evidence supporting this assessment.

A column chart showing the number of Azure tenants targeted by CovertNetwork-1658
Figure 4. Chart showing number of Microsoft Azure tenants targeted by day between October 8, 2024-October 30, 2024.

Historically, Microsoft has observed an average of 8,000 compromised devices actively engaged in the CovertNetwork-1658 network at any given time. On average, about 20 percent of these devices perform password spraying at any given time. Any threat actor using the CovertNetwork-1658 infrastructure could conduct password spraying campaigns at a larger scale and greatly increase the likelihood of successful credential compromise and initial access to multiple organizations in a short amount of time. This scale, combined with quick operational turnover of compromised credentials between CovertNetwork-1658 and Chinese threat actors, allows for the potential of account compromises across multiple sectors and geographic regions.

Below are User Agent Strings* observed in the password spray activity:

  • Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; rv:11.0) like Gecko
  • Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36

*Note: We updated this list of User Agent Strings on November 4, 2024 to fix typos.

Observed activity tied to Storm-0940

Microsoft has observed numerous cases where Storm-0940 has gained initial access to target organizations using valid credentials obtained through CovertNetwork-1658’s password spray operations. In some instances, Storm-0940 was observed using compromised credentials that were obtained from CovertNetwork-1658 infrastructure on the same day. This quick operational hand-off of compromised credentials is evidence of a likely close working relationship between the operators of CovertNetwork-1658 and Storm-0940.

After successfully gaining access to a victim environment, in some instances, Storm-0940 has been observed:        

  • Using scanning and credential dumping tools to move laterally within the network;
  • Attempting to access network devices and install proxy tools and remote access trojans (RATs) for persistence; and
  • Attempting to exfiltrate data.

Recommendations

Organizations can defend against password spraying by building credential hygiene and hardening cloud identities. Microsoft recommends the following mitigations to reduce the impact of this threat:

Detection details

Alerts with the following titles in the Security Center can indicate threat activity on your network:

Microsoft Defender for Endpoint

The following Microsoft Defender for Endpoint alert can indicate associated threat activity:

  • Storm-0940 actor activity detected

Microsoft Defender XDR

The following alert might indicate threat activity related to this threat. Note, however, that these alerts can be also triggered by unrelated threat activity.

  • Password spray attacks originating from single ISP

Microsoft Defender for Identity

The following Microsoft Defender for Identity alerts can indicate associated threat activity:

  • Password Spray
  • Unfamiliar Sign-in properties
  • Atypical travel
  • Suspicious behavior: Impossible travel activity

Microsoft Defender for Cloud Apps

The following Microsoft Defender for Cloud Apps alerts can indicate associated threat activity:

  • Suspicious Administrative Activity
  • Impossible travel activity

Hunting queries

Microsoft Defender XDR

Microsoft Defender XDR customers can run the following query to find related activity in their networks:

Potential Storm-0940 activity           

This query identifies UserAgents obtained from observed activity and AAD SignInEvent attributes that identify potential activity to guide investigation:

//Advanced Hunting Query
let suspAppRes = datatable(appId:string, resourceId:string)
[
    "1950a258-227b-4e31-a9cf-717495945fc2", "00000003-0000-0000-c000-000000000000"
];
let userAgents = datatable(userAgent:string)
[
    "Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; rv:11.0) like Gecko",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36" //Low fidelity
];
AADSignInEventsBeta
| where Timestamp >=ago(30d)
| where ApplicationId in ((suspAppRes | project appId)) and ResourceId in ((suspAppRes | project resourceId)) and UserAgent in ((userAgents| project userAgent))
Failed sign-in activity
The following query identifies failed attempts to sign-in from multiple sources that originate from a single ISP. Attackers distribute attacks from multiple IP addresses across a single service provider to evade detection
IdentityLogonEvents
| where Timestamp > ago(4h)
| where ActionType == "LogonFailed"
| where isnotempty(AccountObjectId)
| summarize TargetCount = dcount(AccountObjectId), TargetCountry = dcount(Location), TargetIPAddress = dcount(IPAddress) by ISP
| where TargetCount >= 100
| where TargetCountry >= 5
| where TargetIPAddress >= 25

Microsoft Sentinel

Microsoft Sentinel customers can use the TI Mapping analytics (a series of analytics all prefixed with ‘TI map’) to automatically match the malicious domain indicators mentioned in this blog post with data in their workspace. If the TI Map analytics are not currently deployed, customers can install the Threat Intelligence solution from the Microsoft Sentinel Content Hub to have the analytics rule deployed in their Sentinel workspace. More details on the Content Hub can be found here: https://learn.microsoft.com/azure/sentinel/sentinel-solutions-deploy.

Potential Storm-0940 activity

This query identifies UserAgents obtained from observed activity and AAD SignInEvent attributes that identify potential activity to guide investigation:

//sentinelquery
let suspAppRes = datatable(appId:string, resourceId:string)
[
    "1950a258-227b-4e31-a9cf-717495945fc2", "00000003-0000-0000-c000-000000000000"
];
let userAgents = datatable(userAgent:string)
[
    "Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; rv:11.0) like Gecko",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36" //Low fidelity
];
SigninLogs
| where TimeGenerated >=ago(30d)
| where AppId  in ((suspAppRes | project appId)) and ResourceIdentity in ((suspAppRes | project resourceId)) and UserAgent in ((userAgents| project userAgent))

Learn more

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on LinkedIn at https://www.linkedin.com/showcase/microsoft-threat-intelligence, and on X (formerly Twitter) at https://twitter.com/MsftSecIntel.

To hear stories and insights from the Microsoft Threat Intelligence community about the ever-evolving threat landscape, listen to the Microsoft Threat Intelligence podcast: https://thecyberwire.com/podcasts/microsoft-threat-intelligence.

The post Chinese threat actor Storm-0940 uses credentials from password spray attacks from a covert network appeared first on Microsoft Security Blog.

]]>
File hosting services misused for identity phishing http://approjects.co.za/?big=en-us/security/blog/2024/10/08/file-hosting-services-misused-for-identity-phishing/ Tue, 08 Oct 2024 16:00:00 +0000 Since mid-April 2024, Microsoft has observed an increase in defense evasion tactics used in campaigns abusing file hosting services like SharePoint, OneDrive, and Dropbox. These campaigns use sophisticated techniques to perform social engineering, evade detection, and compromise identities, and include business email compromise (BEC) attacks.

The post File hosting services misused for identity phishing appeared first on Microsoft Security Blog.

]]>
Microsoft has observed campaigns misusing legitimate file hosting services increasingly use defense evasion tactics involving files with restricted access and view-only restrictions. While these campaigns are generic and opportunistic in nature, they involve sophisticated techniques to perform social engineering, evade detection, and expand threat actor reach to other accounts and tenants. These campaigns are intended to compromise identities and devices, and most commonly lead to business email compromise (BEC) attacks to propagate campaigns, among other impacts such as financial fraud, data exfiltration, and lateral movement to endpoints.

Legitimate hosting services, such as SharePoint, OneDrive, and Dropbox, are widely used by organizations for storing, sharing, and collaborating on files. However, the widespread use of such services also makes them attractive targets for threat actors, who exploit the trust and familiarity associated with these services to deliver malicious files and links, often avoiding detection by traditional security measures.

Importantly, Microsoft takes action against malicious users violating the Microsoft Services Agreement in how they use apps like SharePoint and OneDrive. To help protect enterprise accounts from compromise, by default both Microsoft 365 and Office 365 support multi-factor authentication (MFA) and passwordless sign-in. Consumers can also go passwordless with their Microsoft account. Because security is a team sport, Microsoft also works with third parties like Dropbox to share threat intelligence and protect mutual customers and the wider community.

In this blog, we discuss the typical attack chain used in campaigns misusing file hosting services and detail the recently observed tactics, techniques, and procedures (TTPs), including the increasing use of certain defense evasion tactics. To help defenders protect their identities and data, we also share mitigation guidance to help reduce the impact of this threat, and detection details and hunting queries to locate potential misuse of file hosting services and related threat actor activities. By understanding these evolving threats and implementing the recommended mitigations, organizations can better protect themselves against these sophisticated campaigns and safeguard digital assets.

Attack overview

Phishing campaigns exploiting legitimate file hosting services have been trending throughout the last few years, especially due to the relative ease of the technique. The files are delivered through different approaches, including email and email attachments like PDFs, OneNote, and Word files, with the intent of compromising identities or devices. These campaigns are different from traditional phishing attacks because of the sophisticated defense evasion techniques used.

Since mid-April 2024, we observed threat actors increasingly use these tactics aimed at circumventing defense mechanisms:

  • Files with restricted access: The files sent through the phishing emails are configured to be accessible solely to the designated recipient. This requires the recipient to be signed in to the file-sharing service—be it Dropbox, OneDrive, or SharePoint—or to re-authenticate by entering their email address along with a one-time password (OTP) received through a notification service.
  • Files with view-only restrictions: To bypass analysis by email detonation systems, the files shared in these phishing attacks are set to ‘view-only’ mode, disabling the ability to download and consequently, the detection of embedded URLs within the file.

An example attack chain is provided below, depicting the updated defense evasion techniques being used across stages 4, 5, and 6:

Attack chain diagram. Step 1, attacker compromises a user of a trusted vendor via password spray/AiTM​ attack. Step 2, attacker replays stolen token a few hours later to sign into the user’s file hosting app​. Step 3, attacker creates a malicious file in the compromised user’s file hosting app​. Step 4, attacker shares the file with restrictions to a group of targeted recipients. Step 5, targeted recipient accesses the automated email notification with the suspicious file. Step 6, recipient is required to re-authenticate before accessing the shared file​. Step 7, recipient accesses the malicious shared file link​, directing to an AiTM page. Step 8, recipient submits password and MFA, compromising the user’s session token. Lastly, step 9, file shared on the compromised user’s file hosting app is used for further AiTM and BEC attack​s.
Figure 1. Example attack chain

Initial access

The attack typically begins with the compromise of a user within a trusted vendor. After compromising the trusted vendor, the threat actor hosts a file on the vendor’s file hosting service, which is then shared with a target organization. This misuse of legitimate file hosting services is particularly effective because recipients are more likely to trust emails from known vendors, allowing threat actors to bypass security measures and compromise identities. Often, users from trusted vendors are added to allow lists through policies set by the organization on Exchange Online products, enabling phishing emails to be successfully delivered.

While file names observed in these campaigns also included the recipients, the hosted files typically follow these patterns:

  • Familiar topics based on existing conversations
    • For example, if the two organizations have prior interactions related to an audit, the shared files could be named “Audit Report 2024”.
  • Familiar topics based on current context
    • If the attack has not originated from a trusted vendor, the threat actor often impersonates administrators or help desk or IT support personnel in the sender display name and uses a file name such as “IT Filing Support 2024”, “Forms related to Tax submission”, or “Troubleshooting guidelines”.
  • Topics based on urgency
    • Another common technique observed by the threat actors creating these files is that they create a sense of urgency with the file names like “Urgent:Attention Required” and “Compromised Password Reset”.

Defense evasion techniques

Once the threat actor shares the files on the file hosting service with the intended users, the file hosting service sends the target user an automated email notification with a link to access the file securely. This email is not a phishing email but a notification for the user about the sharing action. In scenarios involving SharePoint or OneDrive, the file is shared from the user’s context, with the compromised user’s email address as the sender. However, in the Dropbox scenario, the file is shared from no-reply@dropbox[.]com. The files are shared through automated notification emails with the subject: “<User> shared <document> with you”. To evade detections, the threat actor deploys the following additional techniques:

  • Only the intended recipient can access the file
    • The intended recipient needs to re-authenticate before accessing the file
    • The file is accessible only for a limited time window
  • The PDF shared in the file cannot be downloaded

These techniques make detonation and analysis of the sample with the malicious link almost impossible since they are restricted.

Identity compromise

When the targeted user accesses the shared file, the user is prompted to verify their identity by providing their email address:

Screenshot of the SharePoint identity verification page
Figure 2. Screenshot of SharePoint identity verification

Next, an OTP is sent from no-reply@notify.microsoft[.]com. Once the OTP is submitted, the user is successfully authorized and can view a document, often masquerading as a preview, with a malicious link, which is another lure to make the targeted user click the “View my message” access link.

Screenshot displaying a message noting a completed document due on 7/11/2024. The button at the bottom states "View my message".
Figure 3. Final landing page post authorization

This link redirects the user to an adversary-in-the-middle (AiTM) phishing page, where the user is prompted to provide the password and complete multifactor authentication (MFA). The compromised token can then be leveraged by the threat actor to perform the second stage BEC attack and continue the campaign.

Microsoft recommends the following mitigations to reduce the impact of this threat:

Appendix

Microsoft Defender XDR detections

Microsoft Defender XDR raises the following alerts by combining Microsoft Defender for Office 365 URL click and Microsoft Entra ID Protection risky sign-ins signal.

  • Risky sign-in after clicking a possible AiTM phishing URL
  • User compromised through session cookie hijack
  • User compromised in a known AiTM phishing kit

Hunting queries

Microsoft Defender XDR 

The file sharing events related to the activity in this blog post can be audited through the CloudAppEvents telemetry. Microsoft Defender XDR customers can run the following query to find related activity in their networks: 

Automated email notifications and suspicious sign-in activity

By correlating the email from the Microsoft notification service or Dropbox automated notification service with a suspicious sign-in activity, we can identify compromises, especially from securely shared SharePoint or Dropbox files.

let usersWithSuspiciousEmails = EmailEvents
    | where SenderFromAddress in ("no-reply@notify.microsoft.com", "no-reply@dropbox.com") or InternetMessageId startswith "<OneTimePasscode"
    | where isnotempty(RecipientObjectId)
    | distinct RecipientObjectId;
AADSignInEventsBeta
| where AccountObjectId in (usersWithSuspiciousEmails)
| where RiskLevelDuringSignIn == 100

Files share contents and suspicious sign-in activity

In the majority of the campaigns, the file name involves a sense of urgency or content related to finance or credential updates. By correlating the file share emails with suspicious sign-ins, compromises can be detected. (For example: Alex shared “Password Reset Mandatory.pdf” with you). Since these are observed as campaigns, validating that the same file has been shared with multiple users in the organization can support the detection.

let usersWithSuspiciousEmails = EmailEvents
    | where Subject has_all ("shared", "with you")
    | where Subject has_any ("payment", "invoice", "urgent", "mandatory", "Payoff", "Wire", "Confirmation", "password")
    | where isnotempty(RecipientObjectId)
    | summarize RecipientCount = dcount(RecipientObjectId), RecipientList = make_set(RecipientObjectId) by Subject
    | where RecipientCount >= 10
    | mv-expand RecipientList to typeof(string)
    | distinct RecipientList;
AADSignInEventsBeta
| where AccountObjectId in (usersWithSuspiciousEmails)
| where RiskLevelDuringSignIn == 100

BEC: File sharing tactics based on the file hosting service used

To initiate the file sharing activity, these campaigns commonly use certain action types depending on the file hosting service being leveraged. Below are the action types from the audit logs recorded for the file sharing events. These action types can be used to hunt for activities related to these campaigns by replacing the action type for its respective application in the queries below this table.

ApplicationAction typeDescription
OneDrive/
SharePoint
AnonymousLinkCreatedLink created for the document, anyone with the link can access, prevalence is rare since mid-April 2024
SharingLinkCreatedLink created for the document, accessible for everyone, prevalence is rare since mid-April 2024
AddedToSharingLinkComplete list of users with whom the file is shared is available in this event
SecureLinkCreatedLink created for the document, specifically can be accessed only by a group of users. List will be available in the AddedToSecureLink Event
AddedToSecureLinkComplete list of users with whom the file is securely shared is available in this event
DropboxCreated shared linkA link for a file to be shared with external user created
Added shared folder to own DropboxA shared folder was added to the user’s Dropbox account
Added users and/or groups to shared file/folderThese action types include the list of external users with whom the files have been shared.
Changed the audience of the shared link
Invited user to Dropbox and added them to shared file/folder

OneDrive or SharePoint: The following query highlights that a specific file has been shared by a user with multiple participants. Correlating this activity with suspicious sign-in attempts preceding this can help identify lateral movements and BEC attacks.

let securelinkCreated = CloudAppEvents
    | where ActionType == "SecureLinkCreated"
    | project FileCreatedTime = Timestamp, AccountObjectId, ObjectName;
let filesCreated = securelinkCreated
    | where isnotempty(ObjectName)
    | distinct tostring(ObjectName);
CloudAppEvents
| where ActionType == "AddedToSecureLink"
| where Application in ("Microsoft SharePoint Online", "Microsoft OneDrive for Business")
| extend FileShared = tostring(RawEventData.ObjectId)
| where FileShared in (filesCreated)
| extend UserSharedWith = tostring(RawEventData.TargetUserOrGroupName)
| extend TypeofUserSharedWith = RawEventData.TargetUserOrGroupType
| where TypeofUserSharedWith == "Guest"
| where isnotempty(FileShared) and isnotempty(UserSharedWith)
| join kind=inner securelinkCreated on $left.FileShared==$right.ObjectName
// Secure file created recently (in the last 1day)
| where (Timestamp - FileCreatedTime) between (1d .. 0h)
| summarize NumofUsersSharedWith = dcount(UserSharedWith) by FileShared
| where NumofUsersSharedWith >= 20

Dropbox: The following query highlights that a file hosted on Dropbox has been shared with multiple participants.

CloudAppEvents
| where ActionType in ("Added users and/or groups to shared file/folder", "Invited user to Dropbox and added them to shared file/folder")
| where Application == "Dropbox"
| where ObjectType == "File"
| extend FileShared = tostring(ObjectName)
| where isnotempty(FileShared)
| mv-expand ActivityObjects
| where ActivityObjects.Type == "Account" and ActivityObjects.Role == "To"
| extend SharedBy = AccountId
| extend UserSharedWith = tostring(ActivityObjects.Name)
| summarize dcount(UserSharedWith) by FileShared, AccountObjectId
| where dcount_UserSharedWith >= 20

Microsoft Sentinel

Microsoft Sentinel customers can use the resources below to find related activities similar to those described in this post:

The following query identifies files with specific keywords that attackers might use in this campaign that have been shared through OneDrive or SharePoint using a Secure Link and accessed by over 10 unique users. It captures crucial details like target users, client IP addresses, timestamps, and file URLs to aid in detecting potential attacks:

let OperationName = dynamic(['SecureLinkCreated', 'AddedToSecureLink']);
OfficeActivity
| where Operation in (OperationName)
| where OfficeWorkload in ('OneDrive', 'SharePoint')
| where SourceFileName has_any ("payment", "invoice", "urgent", "mandatory", "Payoff", "Wire", "Confirmation", "password", "paycheck", "bank statement", "bank details", "closing", "funds", "bank account", "account details", "remittance", "deposit", "Reset")
| summarize CountOfShares = dcount(TargetUserOrGroupName), 
            make_list(TargetUserOrGroupName), 
            make_list(ClientIP), 
            make_list(TimeGenerated), 
            make_list(SourceRelativeUrl) by SourceFileName, OfficeWorkload
| where CountOfShares > 10

Considering that the attacker compromises users through AiTM,  possible AiTM phishing attempts can be detected through the below rule:

In addition, customers can also use the following identity-focused queries to detect and investigate anomalous sign-in events that may be indicative of a compromised user identity being accessed by a threat actor:

Learn more

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on LinkedIn at https://www.linkedin.com/showcase/microsoft-threat-intelligence, and on X (formerly Twitter) at https://twitter.com/MsftSecIntel.

To hear stories and insights from the Microsoft Threat Intelligence community about the ever-evolving threat landscape, listen to the Microsoft Threat Intelligence podcast: https://thecyberwire.com/podcasts/microsoft-threat-intelligence.

The post File hosting services misused for identity phishing appeared first on Microsoft Security Blog.

]]>
Storm-0501: Ransomware attacks expanding to hybrid cloud environments http://approjects.co.za/?big=en-us/security/blog/2024/09/26/storm-0501-ransomware-attacks-expanding-to-hybrid-cloud-environments/ Thu, 26 Sep 2024 17:00:00 +0000 Microsoft has observed the threat actor tracked as Storm-0501 launching a multi-staged attack where they compromised hybrid cloud environments and performed lateral movement from on-premises to cloud environment, leading to data exfiltration, credential theft, tampering, persistent backdoor access, and ransomware deployment. The said attack targeted multiple sectors in the United States, including government, manufacturing, transportation, […]

The post Storm-0501: Ransomware attacks expanding to hybrid cloud environments appeared first on Microsoft Security Blog.

]]>
Microsoft has observed the threat actor tracked as Storm-0501 launching a multi-staged attack where they compromised hybrid cloud environments and performed lateral movement from on-premises to cloud environment, leading to data exfiltration, credential theft, tampering, persistent backdoor access, and ransomware deployment. The said attack targeted multiple sectors in the United States, including government, manufacturing, transportation, and law enforcement. Storm-0501 is a financially motivated cybercriminal group that uses commodity and open-source tools to conduct ransomware operations.

Storm-0501 has been active as early as 2021, initially observed deploying the Sabbath(54bb47h) ransomware in attacks targeting US school districts, publicly leaking data for extortion, and even directly messaging school staff and parents. Since then, most of the threat actor’s attacks have been opportunistic, as the group began operating as a ransomware-as-a-service (RaaS) affiliate deploying multiple ransomware payloads developed and maintained by other threat actors over the years, including Hive, BlackCat (ALPHV), Hunters International, LockBit, and most recently, Embargo ransomware. The threat actor was also recently observed targeting hospitals in the US.

Storm-0501 is the latest threat actor observed to exploit weak credentials and over-privileged accounts to move from organizations’ on-premises environment to cloud environments. They stole credentials and used them to gain control of the network, eventually creating persistent backdoor access to the cloud environment and deploying ransomware to the on-premises. Microsoft previously observed threat actors such as Octo Tempest and Manatee Tempest targeting both on-premises and cloud environments and exploiting the interfaces between the environments to achieve their goals.

As hybrid cloud environments become more prevalent, the challenge of securing resources across multiple platforms grows ever more critical for organizations. Microsoft is committed to helping customers understand these attacks and build effective defenses against them.

In this blog post, we will go over Storm-0501’s tactics, techniques, and procedures (TTPs), typical attack methods, and expansion to the cloud. We will also provide information on how Microsoft detects activities related to this kind of attack, as well as provide mitigation guidance to help defenders protect their environment.

A diagram of the Storm-0501 attack chain
Figure 1. Storm-0501 attack chain

Analysis of the recent Storm-0501 campaign

On-premises compromise

Initial access and reconnaissance

Storm-0501 previously achieved initial access through intrusions facilitated by access brokers like Storm-0249 and Storm-0900, leveraging possibly stolen compromised credentials to sign in to the target system, or exploiting various known remote code execution vulnerabilities in unpatched public-facing servers. In a recent campaign, Storm-0501 exploited known vulnerabilities in Zoho ManageEngine (CVE-2022-47966), Citrix NetScaler (CVE-2023-4966), and ColdFusion 2016 application (possibly CVE-2023-29300 or CVE-2023-38203). In cases observed by Microsoft, these initial access techniques, combined with insufficient operational security practices by the targets, provided the threat actor with administrative privileges on the target device.

After gaining initial access and code execution capabilities on the affected device in the network, the threat actor performed extensive discovery to find potential desirable targets such as high-value assets and general domain information like Domain Administrator users and domain forest trust. Common native Windows tools and commands, such as systeminfo.exe, net.exe, nltest.exe, tasklist.exe, were leveraged in this phase. The threat actor also utilized open-source tools like ossec-win32 and OSQuery to query additional endpoint information. Additionally, in some of the attacks, we observed the threat actor running an obfuscated version of ADRecon.ps1 called obfs.ps1 or recon.ps1 for Active Directory reconnaissance.

Following initial access and reconnaissance, the threat actor deployed several remote monitoring and management tools (RMMs), such as Level.io, AnyDesk, and NinjaOne to interact with the compromised device and maintain persistence.

Credential access and lateral movement

The threat actor took advantage of admin privileges on the local devices it compromised during initial access and attempted to gain access to more accounts within the network through several methods. The threat actor primarily utilized Impacket’s SecretsDump module, which extracts credentials over the network, and leveraged it across an extensive number of devices to obtain credentials. The threat actor used the compromised credentials to access more devices in the network and then leveraged Impacket again to collect additional credentials. The threat actor then repeated this process until they compromised a large set of credentials that potentially included multiple Domain Admin credentials.

In addition, the threat actor was observed attempting to gather secrets by reading sensitive files and in some cases gathering KeePass secrets from the compromised devices. The threat actor used EncryptedStore’s Find-KeePassConfig.ps1 PowerShell script to output the database location and keyfile/user master key information and launch the KeePass executable to gather the credentials. We assess with medium confidence that the threat actor also performed extensive brute force activity on a few occasions to gain additional credentials for specific accounts.

The threat actor was observed leveraging Cobalt Strike to move laterally across the network using the compromised credentials and using the tool’s command-and-control (C2) capabilities to directly communicate with the endpoints and send further commands. The common Cobalt Strike Beacon file types used in these campaigns were .dll files and .ocx files that were launched by rundll32.exe and regsvr32.exe respectively. Moreover, the “license_id” associated with this Cobalt Strike Beacon is “666”.  The “license_id” definition is commonly referred to as Watermark and is a nine-digit value that is unique per legitimate license provided by Cobalt Strike. In this case, the “license_id” was modified with 3-digit unique value in all the beacon configurations.

In cases we observed, the threat actor’s lateral movement across the campaign ended with a Domain Admin compromise and access to a Domain Controller that eventually enabled them to deploy ransomware across the devices in the network.

Data collection and exfiltration

The threat actor was observed exfiltrating sensitive data from compromised devices. To exfiltrate data, the threat actor used the open-source tool Rclone and renamed it to known Windows binary names or variations of them, such as svhost.exe or scvhost.exe as masquerading means. The threat actor employed the renamed Rclone binaries to transfer data to the cloud, using a dedicated configuration that synchronized files to public cloud storage services such as MegaSync across multiple threads. The following are command line examples used by the threat actor in demonstrating this behavior:

  • Svhost.exe copy –filter-from [REDACTED] [REDACTED] config:[REDACTED] -q –ignore-existing –auto-confirm –multi-thread-streams 11 –transfers 11
  • scvhost.exe –config C:\Windows\Debug\a.conf copy [REDACTED UNC PATH] [REDACTED]

Defense evasion

The threat actor attempted to evade detection by tampering with security products in some of the devices they got hands-on-keyboard access to. They employed an open-source tool, resorted to PowerShell cmdlets and existing binaries to evade detection, and in some cases, distributed Group Policy Object (GPO) policies to tamper with security products.

On-premises to cloud pivot

In their recent campaign, we noticed a shift in Storm-0501’s methods. The threat actor used the credentials, specifically Microsoft Entra ID (formerly Azure AD), that were stolen from earlier in the attack to move laterally from the on-premises to the cloud environment and establish persistent access to the target network through a backdoor.

Storm-0501 was observed using the following attack vectors and pivot points on the on-premises side to gain subsequent control in Microsoft Entra ID:

Microsoft Entra Connect Sync account compromise

Microsoft Entra Connect, previously known as Azure AD Connect, is an on-premises Microsoft application that plays a critical role in synchronizing passwords and sensitive data between Active Directory (AD) objects and Microsoft Entra ID objects. Microsoft Entra Connect synchronizes the on-premises identity and Microsoft Entra identity of a user account to allow the user to sign in to both realms with the same password. To deploy Microsoft Entra Connect, the application must be installed on an on-premises server or an Azure VM. To decrease the attack surface, Microsoft recommends that organizations deploy Microsoft Entra Connect on a domain-joined server and restrict administrative access to domain administrators or other tightly controlled security groups. Microsoft Incident Response also published recommendations on preventing cloud identity compromise.

Microsoft Entra Connect Sync is a component of Microsoft Entra Connect that synchronizes identity data between on-premises environments and Microsoft Entra ID. During the Microsoft Entra Connect installation process, at least two new accounts (more accounts are created if there are multiple forests) responsible for the synchronization are created, one in the on-premises AD realm and the other in the Microsoft Entra ID tenant. These service accounts are responsible for the synchronization process.

The on-premises account name is prefixed with “MSOL_” and has permissions to replicate directory changes, modify passwords, modify users, modify groups, and more (see full permissions here).

A screenshot of the on-premises account name in Microsoft Entra Connect Sync
Figure 2. The on-premises account name

The cloud Microsoft Entra ID account is prefixed with “sync_<Entra Connect server name>_” and has the account display name set to “On-Premises Directory Synchronization Service Account”. This user account is assigned with the Directory Synchronization Accounts role (see detailed permissions of this role here). Microsoft recently implemented a change in Microsoft Entra ID that restricts permissions on the Directory Synchronization Accounts (DSA) role in Microsoft Entra Connect Sync and Microsoft Entra Cloud Sync and helps prevent abuse.

A screenshot of the cloud account name in Microsoft Entra Connect Sync
Figure 3. The cloud account name

The on-premises and cloud service accounts conduct the syncing operation every few minutes, similar to Password Hash Synchronization (PHS), to uphold real time user experience. Both user accounts mentioned above are crucial for the Microsoft Entra Connect Sync service operations and their credentials are saved encrypted via DPAPI (Data Protection API) on the server’s disk or a remote SQL server.

We can assess with high confidence that in the recent Storm-0501 campaign, the threat actor specifically located Microsoft Entra Connect Sync servers and managed to extract the plain text credentials of the Microsoft Entra Connect cloud and on-premises sync accounts. We assess that the threat actor was able to achieve this because of the previous malicious activities described in this blog post, such as using Impacket to steal credentials and DPAPI encryption keys, and tampering with security products.

Following the compromise of the cloud Directory Synchronization Account, the threat actor can authenticate using the clear text credentials and get an access token to Microsoft Graph. The compromise of the Microsoft Entra Connect Sync account presents a high risk to the target, as it can allow the threat actor to set or change Microsoft Entra ID passwords of any hybrid account (on-premises account that is synced to Microsoft Entra ID).

Cloud session hijacking of on-premises user account

Another way to pivot from on-premises to Microsoft Entra ID is to gain control of an on-premises user account that has a respective user account in the cloud. In some of the Storm-0501 cases we investigated, at least one of the Domain Admin accounts that was compromised had a respective account in Microsoft Entra ID, with multifactor authentication (MFA) disabled, and assigned with a Global Administrator role. It is important to mention that the sync service is unavailable for administrative accounts in Microsoft Entra, hence the passwords and other data are not synced from the on-premises account to the Microsoft Entra account in this case. However, if the passwords for both accounts are the same, or obtainable by on-premises credential theft techniques (i.e. web browsers passwords store), then the pivot is possible.

If a compromised on-premises user account is not assigned with an administrative role in Microsoft Entra ID and is synced to the cloud and no security boundaries such as MFA or Conditional Access are set, then the threat actor could escalate to the cloud through the following:

  1. If the password is known, then logging in to Microsoft Entra is possible from any device.
  2. If the password is unknown, the threat actor can reset the on-premises user password, and after a few minutes the new password will be synced to the cloud.
  3. If they hold credentials of a compromised Microsoft Entra Directory Synchronization Account, they can set the cloud password using AADInternals’ Set-AADIntUserPassword cmdlet.

If MFA for that user account is enabled, then authentication with the user will require the threat actor to tamper with the MFA or gain control of a device owned by the user and subsequently hijack its cloud session or extract its Microsoft Entra access tokens along with their MFA claims.

MFA is a security practice that requires users to provide two or more verification factors to gain access to a resource and is a recommended security practice for all users, especially for privileged administrators. A lack of MFA or Conditional Access policies limiting the sign-in options opens a wide door of possibilities for the attacker to pivot to the cloud environment, especially if the user has administrative privileges. To increase the security of admin accounts, Microsoft is rolling out additional tenant-level security measures to require MFA for all Azure users.

Impact

Cloud compromise leading to backdoor

Following a successful pivot from the on-premises environment to the cloud through the compromised Microsoft Entra Connect Sync user account or the cloud admin account compromised through cloud session hijacking, the threat actor was able to connect to Microsoft Entra (portal/MS Graph) from any device, using a privileged Microsoft Entra ID account, such as a Global Administrator, and was no longer limited to the compromised devices.

Once Global Administrator access is available for Storm-0501, we observed them creating a persistent backdoor access for later use by creating a new federated domain in the tenant. This backdoor enables an attacker to sign in as any user of the Microsoft Entra ID tenant in hand if the Microsoft Entra ID user property ImmutableId is known or set by the attackers. For users that are configured to be synced by the Microsoft Entra Connect service, the ImmutableId property is automatically populated, while for users that are not synced the default value is null. However, users with administrative privileges can add an ImmutableId value, regardless.

The threat actor used the open-source tool AADInternals, and its Microsoft Entra ID capabilities to create the backdoor. AADInternals is a PowerShell module designed for security researchers and penetration testers that provides various methods for interacting and testing Microsoft Entra ID and is commonly used by Storm-0501. To create the backdoor, the threat actor first needed to have a domain of their own that is registered to Microsoft Entra ID. The attacker’s next step is to determine whether the target domain is managed or federated. A federated domain in Microsoft Entra ID is a domain that is configured to use federation technologies, such as Active Directory Federation Services (AD FS), to authenticate users. If the target domain is managed, then the attackers need to convert it to a federated one and provide a root certificate to sign future tokens upon user authentication and authorization processes. If the target domain is already federated, then the attackers need to add the root certificate as “NextSigningCertificate”.

Once a backdoor domain is available for use, the threat actor creates a federation trust between the compromised tenant, and their own tenant. The threat actor uses the AADInternals commands that enable the creation of Security Assertion Markup Language (SAML or SAML2) tokens, which can be used to impersonate any user in the organization and bypass MFA to sign in to any application. Microsoft observed the actor using the SAML token sign in to Office 365.

On-premises compromise leading to ransomware

Once the threat actor achieved sufficient control over the network, successfully extracted sensitive files, and managed to move laterally to the cloud environment, the threat actor then deployed the Embargo ransomware across the organization. We observed that the threat actor did not always resort to ransomware distribution, and in some cases only maintained backdoor access to the network.

Embargo ransomware is a new strain developed in Rust, known to use advanced encryption methods. Operating under the RaaS model, the ransomware group behind Embargo allows affiliates like Storm-0501 to use its platform to launch attacks in exchange for a share of the ransom. Embargo affiliates employ double extortion tactics, where they first encrypt a victim’s files and threaten to leak stolen sensitive data unless a ransom is paid.

In the cases observed by Microsoft, the threat actor leveraged compromised Domain Admin accounts to distribute the Embargo ransomware via a scheduled task named “SysUpdate” that was registered via GPO on the devices in the network. The ransomware binaries names that were used were PostalScanImporter.exe and win.exe. Once the files on the target devices were encrypted, the encrypted files extension changed to .partial, .564ba1, and .embargo.

Mitigation and protection guidance

Microsoft recently implemented a change in Microsoft Entra ID that restricts permissions on the Directory Synchronization Accounts (DSA) role in Microsoft Entra Connect Sync and Microsoft Entra Cloud Sync as part of ongoing security hardening. This change helps prevent threat actors from abusing Directory Synchronization Accounts in attacks.

Customers may also refer to Microsoft’s human-operated ransomware overview for general hardening recommendations against ransomware attacks.

The other techniques used by threat actors and described in this blog can be mitigated by adopting the following security measures:

  • Secure accounts with credential hygiene: practice the principle of least privilege and audit privileged account activity in your Microsoft Entra ID environments to slow and stop attackers.
  • Enable Conditional Access policies – Conditional Access policies are evaluated and enforced every time the user attempts to sign in. Organizations can protect themselves from attacks that leverage stolen credentials by enabling policies such as device compliance or trusted IP address requirements.
    • Set a Conditional Access policy to limit the access of Microsoft Entra ID sync accounts from untrusted IP addresses to all cloud apps. The Microsoft Entra ID sync account is identified by having the role ‘Directory Synchronization Accounts’. Please refer to the Advanced Hunting section and check the relevant query to get those IP addresses.
  • Implement Conditional Access authentication strength to require phishing-resistant authentication for employees and external users for critical apps.
  • Follow Microsoft’s best practices for securing Active Directory Federation Services.  
  • Refer to Azure Identity Management and access control security best practices for further steps and recommendations to manage, design, and secure your Azure AD environment can be found by referring.
  • Ensure Microsoft Defender for Cloud Apps connectors are turned on for your organization to receive alerts on the Microsoft Entra ID sync account and all other users.
  • Enable protection to prevent by-passing of cloud Microsoft Entra MFA when federated with Microsoft Entra ID.
  • Set the validatingDomains property of federatedTokenValidationPolicy to “all” to block attempts to sign-in to any non-federated domain (like .onmicrosoft.com) with SAML tokens.
  • Turn on Microsoft Entra ID protection to monitor identity-based risks and create risk-based conditional access policies to remediate risky sign-ins.
  • Turn on tamper protection features to prevent attackers from stopping security services such as Microsoft Defender for Endpoint, which can help prevent hybrid cloud environment attacks such as Microsoft Entra Connect abuse.
  • Refer to the recommendations in our attacker technique profile, including use of Windows Defender Application Control or AppLocker to create policies to block unapproved information technology (IT) management tools to protect against the abuse of legitimate remote management tools like AnyDesk or Level.io.
  • Run endpoint detection and response (EDR) in block mode so that Defender for Endpoint can block malicious artifacts, even when your non-Microsoft antivirus does not detect the threat or when Microsoft Defender Antivirus is running in passive mode. EDR in block mode works behind the scenes to remediate malicious artifacts detected post-breach.
  • Turn on investigation and remediation in full automated mode to allow Defender for Endpoint to take immediate action on alerts to help remediate alerts, significantly reducing alert volume.

Detection details

Alerts with the following names can be in use when investigating the current campaign of Storm-0501.

Microsoft Defender XDR detections

Microsoft Defender Antivirus 

Microsoft Defender Antivirus detects the Cobalt Strike Beacon as the following:

Additional Cobalt Strike components are detected as the following:

Microsoft Defender Antivirus detects tools that enable Microsoft Entra ID enumeration as the following malware: 

Embargo Ransomware threat components are detected as the following:

Microsoft Defender for Endpoint 

Alerts with the following titles in the security center can indicate threat activity related to Storm-0501 on your network:

  • Ransomware-linked Storm-0501 threat actor detected

The following alerts might also indicate threat activity associated with this threat. These alerts, however, can be triggered by unrelated threat activity and are not monitored in the status cards provided with this report. 

  • Possible Adobe ColdFusion vulnerability exploitation
  • Compromised account conducting hands-on-keyboard attack
  • Ongoing hands-on-keyboard attacker activity detected (Cobalt Strike)
  • Ongoing hands-on-keyboard attack via Impacket toolkit
  • Suspicious Microsoft Defender Antivirus exclusion
  • Attempt to turn off Microsoft Defender Antivirus protection
  • Renaming of legitimate tools for possible data exfiltration
  • BlackCat ransomware
  • ‘Embargo’ ransomware was detected and was active
  • Suspicious Group Policy action detected
  • An active ‘Embargo’ ransomware was detected

The following alerts might indicate on-premises to cloud pivot through Microsoft Entra Connect:

  • Entra Connect Sync credentials extraction attempt
  • Suspicious cmdlets launch using AADInternals
  • Potential Entra Connect Tampering
  • Indication of local security authority secrets theft

Microsoft Defender for Identity

The following Microsoft Defender for Identity alerts can indicate activity related to this threat:

  • Data exfiltration over SMB
  • Suspected DCSync attack

Microsoft Defender for Cloud Apps

Microsoft Defender for Cloud Apps can detect abuse of permissions in Microsoft Entra ID and other cloud apps. Activities related to the Storm-0501 campaign described in this blog are detected as the following:

  • Backdoor creation using AADInternals tool
  • Compromised Microsoft Entra ID Cloud Sync account
  • Suspicious sign-in to Microsoft Entra Connect Sync account
  • Entra Connect Sync account suspicious activity following a suspicious login
  • AADInternals tool used by a Microsoft Entra Sync account
  • Suspicious login from AADInternals tool

Microsoft Defender Vulnerability Management

Microsoft Defender Vulnerability Management surfaces devices that may be affected by the following vulnerabilities used in this threat:

  • CVE-2022-47966

Threat intelligence reports 

Microsoft customers can use the following reports in Microsoft Defender Threat Intelligence to get the most up-to-date information about the threat actor, malicious activity, and techniques discussed in this blog. These reports provide the intelligence, protection information, and recommended actions to prevent, mitigate, or respond to associated threats found in customer environments: 

Advanced hunting 

Microsoft Defender XDR

Microsoft Defender XDR customers can run the following query to find related activity in their networks:

Microsoft Entra Connect Sync account exploration

Explore sign-in activity from IdentityLogonEvents, look for uncommon behavior, such as sign-ins from newly seen IP addresses or sign-ins to new applications that are non-sync related.

IdentityLogonEvents
| where Timestamp > ago(30d)
| where AccountDisplayName contains "On-Premises Directory Synchronization Service Account"
| extend ApplicationName = tostring(RawEventData.ApplicationName)
| project-reorder Timestamp, AccountDisplayName, AccountObjectId, IPAddress, ActionType, ApplicationName, OSPlatform, DeviceType

Usually, the activity of the sync account is repetitive, coming from the same IP address to the same application, any deviation from the natural flow is worth investigating. Cloud applications that normally accessed by the Microsoft Entra ID sync account are “Microsoft Azure Active Directory Connect”, “Windows Azure Active Directory”, “Microsoft Online Syndication Partner Portal”

Explore the cloud activity (a.k.a ActionType) of the sync account, same as above, this account by nature performs a certain set of actions including ‘update User.’, ‘update Device.’ and so on. New and uncommon activity from this user might indicate an interactive use of the account, even though it could have been from someone inside the organization it could also be the threat actor.

CloudAppEvents
| where Timestamp > ago(30d)
| where AccountDisplayName has "On-Premises Directory Synchronization Service Account"
| extend Workload = RawEventData.Workload
| project-reorder Timestamp, IPAddress, AccountObjectId, ActionType, Application, Workload, DeviceType, OSPlatform, UserAgent, ISP

Pay close attention to action from different DeviceTypes or OSPlatforms, this account automated service is performed from one specific machine, so there shouldn’t be any variety in these fields.

Check which IP addresses Microsoft Entra Connect Sync account uses

This query reveals all IP addresses that the default Microsoft Entra Connect Sync account uses so those could be added as trusted IP addresses for the Entra ID sync account (make sure the account is not compromised before relying on this list)

IdentityLogonEvents
| where AccountDisplayName has "On-Premises Directory Synchronization Service Account"
| where ActionType == "LogonSuccess"
| distinct IPAddress
| union (CloudAppEvents
| where AccountDisplayName has "On-Premises Directory Synchronization Service Account"
| distinct IPAddress)
| distinct IPAddress

Federation and authentication domain changes

Explore the addition of a new authentication or federation domain, validate that the new domain is valid one and was purposefully added

CloudAppEvents
| where Timestamp > ago(30d)
| where ActionType in ("Set domain authentication.", "Set federation settings on domain.")

Microsoft Sentinel

Microsoft Sentinel customers can use the TI Mapping analytics (a series of analytics all prefixed with ‘TI map’) to automatically match the malicious domain indicators mentioned in this blog post with data in their workspace. If the TI Map analytics are not currently deployed, customers can install the Threat Intelligence solution from the Microsoft Sentinel Content Hub to have the analytics rule deployed in their Sentinel workspace.

Assess your environment for Manage Engine, Netscaler, and ColdFusion vulnerabilities.

DeviceTvmSoftwareVulnerabilities  
| where CveId in ("CVE-2022-47966","CVE-2023-4966","CVE-2023-29300","CVE-2023-38203")   
| project DeviceId,DeviceName,OSPlatform,OSVersion,SoftwareVendor,SoftwareName,SoftwareVersion,  
CveId,VulnerabilitySeverityLevel  
| join kind=inner ( DeviceTvmSoftwareVulnerabilitiesKB | project CveId, CvssScore,IsExploitAvailable,VulnerabilitySeverityLevel,PublishedDate,VulnerabilityDescription,AffectedSoftware ) on CveId  
| project DeviceId,DeviceName,OSPlatform,OSVersion,SoftwareVendor,SoftwareName,SoftwareVersion,  
CveId,VulnerabilitySeverityLevel,CvssScore,IsExploitAvailable,PublishedDate,VulnerabilityDescription,AffectedSoftware

Search for file IOC

let selectedTimestamp = datetime(2024-09-17T00:00:00.0000000Z);
let fileName = dynamic(["PostalScanImporter.exe","win.exe","name.dll","248.dll","cs240.dll","fel.ocx","theme.ocx","hana.ocx","obfs.ps1","recon.ps1"]); 
let FileSHA256 = dynamic(["efb2f6452d7b0a63f6f2f4d8db49433259249df598391dd79f64df1ee3880a8d","a9aeb861817f3e4e74134622cbe298909e28d0fcc1e72f179a32adc637293a40","caa21a8f13a0b77ff5808ad7725ff3af9b74ce5b67426c84538b8fa43820a031","53e2dec3e16a0ff000a8c8c279eeeca8b4437edb8ec8462bfbd9f64ded8072d9","827f7178802b2e92988d7cff349648f334bc86317b0b628f4bb9264285fccf5f","ee80f3e3ad43a283cbc83992e235e4c1b03ff3437c880be02ab1d15d92a8348a","de09ec092b11a1396613846f6b082e1e1ee16ea270c895ec6e4f553a13716304","d065623a7d943c6e5a20ca9667aa3c41e639e153600e26ca0af5d7c643384670","c08dd490860b54ae20fa9090274da9ffa1ba163f00d1e462e913cf8c68c11ac1"]); 
search in (AlertEvidence,BehaviorEntities,CommonSecurityLog,DeviceBaselineComplianceProfiles,DeviceEvents,DeviceFileEvents,DeviceImageLoadEvents, DeviceLogonEvents,DeviceNetworkEvents,DeviceProcessEvents,DeviceRegistryEvents,DeviceFileCertificateInfo,DynamicEventCollection,EmailAttachmentInfo,OfficeActivity,SecurityEvent,ThreatIntelligenceIndicator) TimeGenerated between ((selectedTimestamp - 1m) .. (selectedTimestamp + 90d)) // from September 17th runs the search for 90 days, change the selectedTimestamp accordingly. and  (FileName in (fileName) or OldFileName in (fileName)  or ProfileName in (fileName)  or InitiatingProcessFileName in (fileName)  or InitiatingProcessParentFileName in (fileName)  or InitiatingProcessVersionInfoInternalFileName in (fileName)  or InitiatingProcessVersionInfoOriginalFileName in (fileName)  or PreviousFileName in (fileName)  or ProcessVersionInfoInternalFileName in (fileName) or ProcessVersionInfoOriginalFileName in (fileName) or DestinationFileName in (fileName) or SourceFileName in (fileName)or ServiceFileName in (fileName) or SHA256 in (FileSHA256)  or InitiatingProcessSHA256 in (FileSHA256))

Microsoft Sentinel also has a range of detection and threat hunting content that customers can use to detect the post exploitation activity detailed in this blog, in addition to Microsoft Defender XDR detections list above.

Indicators of compromise (IOCs)

The following list provides indicators of compromise (IOCs) observed during our investigation. We encourage our customers to investigate these indicators within their environments and implement detections and protections to identify any past related activity and prevent future attacks against their systems.

File nameSHA-256Description
PostalScanImporter.exe, win.exeefb2f6452d7b0a63f6f2f4d8db49433259249df598391dd79f64df1ee3880a8dEmbargo ransomware
win.exea9aeb861817f3e4e74134622cbe298909e28d0fcc1e72f179a32adc637293a40Embargo ransomware
name.dllcaa21a8f13a0b77ff5808ad7725ff3af9b74ce5b67426c84538b8fa43820a031Cobalt Strike
248.dlld37dc37fdcebbe0d265b8afad24198998ae8c3b2c6603a9258200ea8a1bd7b4aCobalt Strike
cs240.dll53e2dec3e16a0ff000a8c8c279eeeca8b4437edb8ec8462bfbd9f64ded8072d9Cobalt Strike
fel.ocx827f7178802b2e92988d7cff349648f334bc86317b0b628f4bb9264285fccf5fCobalt Strike
theme.ocxee80f3e3ad43a283cbc83992e235e4c1b03ff3437c880be02ab1d15d92a8348aCobalt Strike
hana.ocxde09ec092b11a1396613846f6b082e1e1ee16ea270c895ec6e4f553a13716304Cobalt Strike
obfs.ps1d065623a7d943c6e5a20ca9667aa3c41e639e153600e26ca0af5d7c643384670ADRecon
recon.ps1c08dd490860b54ae20fa9090274da9ffa1ba163f00d1e462e913cf8c68c11ac1ADRecon

References

Omri Refaeli, Tafat Gaspar, Vaibhav Deshmukh, Naya Hashem, Charles-Edouard Bettan

Microsoft Threat Intelligence Community

Learn more

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on LinkedIn at https://www.linkedin.com/showcase/microsoft-threat-intelligence, and on X (formerly Twitter) at https://twitter.com/MsftSecIntel.

To hear stories and insights from the Microsoft Threat Intelligence community about the ever-evolving threat landscape, listen to the Microsoft Threat Intelligence podcast: https://thecyberwire.com/podcasts/microsoft-threat-intelligence.

The post Storm-0501: Ransomware attacks expanding to hybrid cloud environments appeared first on Microsoft Security Blog.

]]>
Peach Sandstorm deploys new custom Tickler malware in long-running intelligence gathering operations http://approjects.co.za/?big=en-us/security/blog/2024/08/28/peach-sandstorm-deploys-new-custom-tickler-malware-in-long-running-intelligence-gathering-operations/ Wed, 28 Aug 2024 15:00:00 +0000 Between April and July 2024, Microsoft observed Iranian state-sponsored threat actor Peach Sandstorm deploying a new custom multi-stage backdoor, which we named Tickler. Tickler has been used in attacks against targets in the satellite, communications equipment, oil and gas, as well as federal and state government sectors in the United States and the United Arab […]

The post Peach Sandstorm deploys new custom Tickler malware in long-running intelligence gathering operations appeared first on Microsoft Security Blog.

]]>
Between April and July 2024, Microsoft observed Iranian state-sponsored threat actor Peach Sandstorm deploying a new custom multi-stage backdoor, which we named Tickler. Tickler has been used in attacks against targets in the satellite, communications equipment, oil and gas, as well as federal and state government sectors in the United States and the United Arab Emirates. This activity is consistent with the threat actor’s persistent intelligence gathering objectives and represents the latest evolution of their long-standing cyber operations.

Peach Sandstorm also continued conducting password spray attacks against the educational sector for infrastructure procurement and against the satellite, government, and defense sectors as primary targets for intelligence collection. In addition, Microsoft observed intelligence gathering and possible social engineering targeting organizations within the higher education, satellite, and defense sectors via the professional networking platform LinkedIn.

Microsoft assesses that Peach Sandstorm operates on behalf of the Iranian Islamic Revolutionary Guard Corps (IRGC) based on the group’s victimology and operational focus. Microsoft further assesses that Peach Sandstorm’s operations are designed to facilitate intelligence collection in support of Iranian state interests.

Microsoft tracks Peach Sandstorm campaigns and directly notifies customers who we observe have been targeted or compromised, providing them with the necessary information to help secure their environment. As part of our continuous monitoring, analysis, and reporting on the threat landscape, we are sharing our research on Peach Sandstorm’s use of Tickler to raise awareness of this threat actor’s evolving tradecraft and to educate organizations on how to harden their attack surfaces against this and similar activity. Microsoft published information on unrelated election interference linked to Iran in the most recent Microsoft Threat Analysis Center (MTAC) report.

Evolution of Peach Sandstorm tradecraft

In past campaigns, Peach Sandstorm has been observed to use password spray attacks to gain access to targets of interest with a high level of success. The threat actor has also conducted intelligence gathering via LinkedIn, researching organizations and individuals employed in the higher education, satellite, and defense sectors.

During the group’s latest operations, Microsoft observed new tactics, techniques, and procedures (TTPs) following initial access via password spray attacks or social engineering. Between April and July 2024, Peach Sandstorm deployed a new custom multi-stage backdoor, Tickler, and leveraged Azure infrastructure hosted in fraudulent, attacker-controlled Azure subscriptions for command-and-control (C2). Microsoft continuously monitors Azure, along with all Microsoft products and services, to ensure compliance with our terms of service. Microsoft has notified affected organizations and disrupted the fraudulent Azure infrastructure and accounts associated with this activity.

A diagram of the Peach Sandstorm attack chain that starts from initial access to the deployment of Tickler backdoor.
Figure 1. Peach Sandstorm attack chain

Intelligence gathering on LinkedIn

Going back to at least November 2021 and continuing through mid-2024, Microsoft observed Peach Sandstorm using multiple LinkedIn profiles masquerading as students, developers, and talent acquisition managers based in the US and Western Europe. Peach Sandstorm primarily used them to conduct intelligence gathering and possible social engineering against the higher education, satellite sectors, and related industries. The identified LinkedIn accounts were subsequently taken down. Information on LinkedIn’s policies and actions against inauthentic behavior on its platform is available here.

Password spray attacks as a common attack vector

Since at least February 2023, Microsoft has observed Peach Sandstorm carrying out password spray activity against thousands of organizations. In password spray attacks, threat actors attempt to authenticate to many different accounts using a single password or a list of commonly used passwords. In contrast to brute force attacks, which target a single account using many passwords, password spray attacks help adversaries maximize their chances for success and minimize the likelihood of automatic account lockouts.

Microsoft has observed that once Peach Sandstorm has verified a target account’s credentials using the password spray technique, the threat actor performed subsequent sign-ins to the compromised accounts from commercial VPN infrastructure.

In April and May 2024, Microsoft observed Peach Sandstorm conducting password spray attacks targeting organizations in the defense, space, education, and government sectors in the US and Australia. In particular, Peach Sandstorm continued to use the “go-http-client” user agent that they are known to leverage in password spray campaigns. While the password spray activity appeared consistently across sectors, Microsoft observed Peach Sandstorm exclusively leveraging compromised user accounts in the education sector to procure operational infrastructure. In these cases, the threat actor accessed existing Azure subscriptions or created one using the compromised account to host their infrastructure. The attacker-controlled Azure infrastructure then served as C2 or operational hops for Peach Sandstorm operations targeting the government, defense, and space sectors. Recent updates to security defaults in Azure, such as multi-factor authentication help ensure that Azure accounts are more resistant to account compromise techniques such as those used by Peach Sandstorm.

Tickler malware

Microsoft Threat Intelligence identified two samples of the Tickler malware, a custom multi-stage backdoor, that Peach Sandstorm deployed in compromised environments as recently as July 2024. The first sample was contained in an archive file named Network Security.zip alongside benign PDF files used as decoy documents. The archive file contained:

  • YAHSAT NETWORK_INFRASTRUCTURE_SECURITY_GUIDE_20240421.pdf.exe – theTickler malware
  • Yahsat Policy Guide- April 2024.pdf – a benign PDF
  • YAHSAT NETWORK_INFRASTRUCTURE_SECURITY_GUIDE_20240421.pdf – a second benign PDF

YAHSAT NETWORK_INFRASTRUCTURE_SECURITY_GUIDE_20240421.pdf.exe is a 64-bit C/C++ based native PE file. The sample begins with a Process Environment Block (PEB) traversal to locate the in-memory address of file kernell32.dll.

Upon successful PEB traversal yielding the address of kernell32.dll in memory, the sample decrypts a string to LoadLibraryA and resolves its address, decrypts the string “kernel32.dll”, and loads it again using LoadLibraryA. The sample then launches the benign PDF file YAHSAT NETWORK_INFRASTRUCTURE_SECURITY_GUIDE_20240421.pdf as a decoy document.

The sample collects the network information from the host and sends it to the C2 URI via HTTP POST request, likely as a means for the threat actor to orient themselves on the compromised network. The below network information is an example generated in a lab environment:

A screenshot of sample network information captured by Tickler malware.
Figure 2. Network information collected by Tickler after deployment on target host

We subsequently observed Peach Sandstorm iterating and improving on this initial sample. The second Tickler sample, sold.dll, is a Trojan dropper functionally identical to the previously identified sample. The malware downloads additional payloads from the C2 server, including a backdoor, a batch script to set persistence for this backdoor, and the following legitimate files:

  • msvcp140.dll (SHA-256: dad53a78662707d182cdb230e999ef6effc0b259def31c196c51cc3e8c42a9b8)
  • LoggingPlatform.dll (SHA-256: 56ac00856b19b41bc388ecf749eb4651369e7ced0529e9bf422284070de457b6)
  • vcruntime140.dll (SHA-256: 22017c9b022e6f2560fee7d544a83ea9e3d85abee367f2f20b3b0448691fe2d4)
  • Microsoft.SharePoint.NativeMessaging.exe (SHA-256: e984d9085ae1b1b0849199d883d05efbccc92242b1546aeca8afd4b1868c54f5)

The files msvcp140.dll, LoggingPlatform.dll, vcruntime140.dll, and Microsoft.SharePoint.NativeMessaging.exe are legitimate Windows signed binaries likely used for DLL sideloading.

Additionally, we observed the sample downloading the following malicious files:

  • A batch script (SHA-256: 5df4269998ed79fbc997766303759768ce89ff1412550b35ff32e85db3c1f57b)
  • A DLL file (SHA-256: fb70ff49411ce04951895977acfc06fa468e4aa504676dedeb40ba5cea76f37f)
  • A DLL file (SHA-256: 711d3deccc22f5acfd3a41b8c8defb111db0f2b474febdc7f20a468f67db0350)

The batch script adds a registry Run key for a file called SharePoint.exe, likely used to load the malicious DLL files above, thus setting up persistence:

Code of the registry Run key added to set up malware persistence
Figure 3. Registry Run key added to set up persistence

The two DLL files are both 64-bit C/C++ compiled PE DLL files and appear to be functionally identical to the previously analyzed samples. As fully functional backdoors, they can run the following commands:

  • systeminfo – Gather system information
  • dir – List directory
  • run – Execute command
  • delete – Delete file
  • interval – Sleep interval
  • upload – Download file from the C2
  • download – Upload file to the C2

Azure resources abuse

Microsoft observed Peach Sandstorm creating Azure tenants using Microsoft Outlook email accounts and creating Azure for Students subscriptions in these tenants. Additionally, the group leveraged compromised user accounts in the Azure tenants of organizations in the education sector to do the same. Within these subscriptions, Peach Sandstorm subsequently created Azure resources for use as C2 for the backdoor. Of note, we have observed multiple Iranian groups, including Smoke Sandstorm, use similar techniques in recent months. The following resources were created by Peach Sandstorm for use as Tickler C2 nodes:

  • subreviews.azurewebsites[.]net 
  • satellite2.azurewebsites[.]net 
  • nodetestservers.azurewebsites[.]net 
  • satellitegardens.azurewebsites[.]net 
  • softwareservicesupport.azurewebsites[.]net
  • getservicessuports.azurewebsites[.]net
  • getservicessupports.azurewebsites[.]net 
  • getsupportsservices.azurewebsites[.]net 
  • satellitespecialists.azurewebsites[.]net
  • satservicesdev.azurewebsites[.]net
  • servicessupports.azurewebsites[.]net
  • websupportprotection.azurewebsites[.]net 
  • supportsoftwarecenter.azurewebsites[.]net
  • centersoftwaresupports.azurewebsites[.]net
  • softwareservicesupports.azurewebsites[.]net
  • getsdervicessupoortss.azurewebsites[.]net

Post-compromise activity

In the past year, Peach Sandstorm has successfully compromised several organizations, primarily in the aforementioned sectors, using bespoke tooling. Once Peach Sandstorm gains access to an organization, the threat actor is known to perform lateral movement and actions on objectives using the following techniques:

Moving laterally via Server Message Block (SMB)

After compromising a European defense organization, Peach Sandstorm threat actors moved laterally via SMB. SMB lateral movement is a technique used by threat actors to move from one compromised machine to another within a network by exploiting the SMB protocol. This protocol, which is used for sharing files, printers, and other resources on a network, could be misused by attackers to propagate their access and gain control over multiple systems.

Downloading and installing a remote monitoring and management (RMM) tool

In an older intrusion against a multinational pharmaceutical company not associated with the campaign discussed in this blog, after a likely successful password spray attack, Peach Sandstorm attempted to download and install AnyDesk, a commercial RMM tool. AnyDesk has a range of capabilities that allow users to remotely access a network, persist in a compromised environment, and enable command and control. The convenience and utility of a tool like AnyDesk is amplified by the fact that it might be permitted by application controls in environments where it is used legitimately by IT support personnel or system administrators.

Taking an Active Directory (AD) snapshot

In at least one intrusion against a Middle East-based satellite operator, Peach Sandstorm actors compromised a user using a malicious ZIP file delivered via Microsoft Teams message followed by dropping AD Explorer and taking an AD snapshot. An AD snapshot is a read-only, point-in-time copy of the AD database and related files, which can be used for various legitimate administrative tasks. These snapshots can also be exploited by threat actors for malicious purposes.

Mitigations

To harden networks against Peach Sandstorm activity, defenders can implement the following:

To protect against password spray attacks, implement the following mitigations:

Strengthen endpoints against attacks by following these steps:

Microsoft Defender XDR detections

Microsoft Defender Antivirus

Microsoft Defender Antivirus detects components of this threat as the following malware:

  • TrojanDownloader:Win64/Tickler
  • Backdoor:Win64/Tickler

Microsoft Defender for Endpoint

The following Microsoft Defender for Endpoint alerts can indicate associated threat activity:

  • Peach Sandstorm actor activity detected

The following alerts might also indicate threat activity related to this threat. Note, however, that these alerts can be also triggered by unrelated threat activity.

  • Password spraying
  • Unfamiliar Sign-in properties
  • An executable file loaded an unexpected DLL file

Microsoft Defender for Identity

The following Microsoft Defender for Identity alerts can indicate activity related to this threat. Note, however, that these alerts can be also triggered by unrelated threat activity.

  • Atypical travel
  • Suspicious behavior: Impossible travel activity

Microsoft Defender for Cloud Apps

The following Microsoft Defender for Cloud Apps alerts can indicate activity related to this threat. Note, however, that these alerts can be also triggered by unrelated threat activity.

  • Activity from a Tor IP address
  • Suspicious Administrative Activity
  • Impossible travel activity
  • Multiple failed login attempts
  • Activity from an anonymous proxy

Threat intelligence reports

Microsoft Defender Threat Intelligence customers can use the following reports in Microsoft products to get the most up-to-date information about the threat actor, malicious activity, and techniques discussed in this blog. These reports provide the intelligence, protection information, and recommended actions to help prevent, mitigate, or respond to associated threats found in customer environments.

Microsoft Defender Threat Intelligence

Hunting queries

Microsoft Defender XDR

Microsoft Defender XDR customers can run the following query to find related activity in their networks:

Failed logon activity

The following query identifies failed attempts to sign-in from multiple sources that originate from a single ISP. Attackers distribute attacks from multiple IP addresses across a single service provider to evade detection. Run query 

IdentityLogonEvents
| where Timestamp > ago(4h)
| where ActionType == "LogonFailed"
| where isnotempty(AccountObjectId)
| summarize TargetCount = dcount(AccountObjectId), TargetCountry = dcount(Location), TargetIPAddress = dcount(IPAddress) by ISP
| where TargetCount >= 100
| where TargetCountry >= 5
| where TargetIPAddress >= 25

Connectivity to C2s

The following queries identifies connectivity to Peach Sandstorm created Azure App Service apps for command and control. Run query

let domainList = dynamic(["subreviews.azurewebsites.net", 
    "satellite2.azurewebsites.net",
    "nodetestservers.azurewebsites.net", 
    "satellitegardens.azurewebsites.net",
    "softwareservicesupport.azurewebsites.net",
    "getservicessuports.azurewebsites.net",
    "getservicessupports.azurewebsites.net",
    "getsupportsservices.azurewebsites.net",
    "satellitespecialists.azurewebsites.net",
    "satservicesdev.azurewebsites.net",
    "servicessupports.azurewebsites.net",
    "websupportprotection.azurewebsites.net ",
    "supportsoftwarecenter.azurewebsites.net",
    "centersoftwaresupports.azurewebsites.net"
    "softwareservicesupports.azurewebsites.net",
    "getsdervicessupoortss.azurewebsites.net"]);union
(
    DnsEvents
    | where QueryType has_any(domainList) or Name has_any(domainList)
    | project TimeGenerated, Domain = QueryType, SourceTable = "DnsEvents"
),
(
    IdentityQueryEvents
    | where QueryTarget has_any(domainList)
    | project Timestamp, Domain = QueryTarget, SourceTable = "IdentityQueryEvents"
),
(
    DeviceNetworkEvents
    | where RemoteUrl has_any(domainList)
    | project Timestamp, Domain = RemoteUrl, SourceTable = "DeviceNetworkEvents"
),
(
    DeviceNetworkInfo
    | extend DnsAddresses = parse_json(DnsAddresses), ConnectedNetworks = parse_json(ConnectedNetworks)
    | mv-expand DnsAddresses, ConnectedNetworks
    | where DnsAddresses has_any(domainList) or ConnectedNetworks.Name has_any(domainList)
    | project Timestamp, Domain = coalesce(DnsAddresses, ConnectedNetworks.Name), SourceTable = "DeviceNetworkInfo"
),
(
    VMConnection
    | extend RemoteDnsQuestions = parse_json(RemoteDnsQuestions), RemoteDnsCanonicalNames = parse_json(RemoteDnsCanonicalNames)
    | mv-expand RemoteDnsQuestions, RemoteDnsCanonicalNames
    | where RemoteDnsQuestions has_any(domainList) or RemoteDnsCanonicalNames has_any(domainList)
    | project TimeGenerated, Domain = coalesce(RemoteDnsQuestions, RemoteDnsCanonicalNames), SourceTable = "VMConnection"
),
(
    W3CIISLog
    | where csHost has_any(domainList) or csReferer has_any(domainList)
    | project TimeGenerated, Domain = coalesce(csHost, csReferer), SourceTable = "W3CIISLog"
),
(
    EmailUrlInfo
    | where UrlDomain has_any(domainList)
    | project Timestamp, Domain = UrlDomain, SourceTable = "EmailUrlInfo"
),
(
    UrlClickEvents
    | where Url has_any(domainList)
    | project Timestamp, Domain = Url, SourceTable = "UrlClickEvents"
)
| order by TimeGenerated desc

Malicious file activity

The following query will surface events involving malicious files related to this activity. Run query

let fileHashes = dynamic(["711d3deccc22f5acfd3a41b8c8defb111db0f2b474febdc7f20a468f67db0350", "fb70ff49411ce04951895977acfc06fa468e4aa504676dedeb40ba5cea76f37f", "5df4269998ed79fbc997766303759768ce89ff1412550b35ff32e85db3c1f57b", "ccb617cc7418a3b22179e00d21db26754666979b4c4f34c7fda8c0082d08cec4", "7eb2e9e8cd450fc353323fd2e8b84fbbdfe061a8441fd71750250752c577d198"]);
union
(
    DeviceFileEvents
    | where SHA256 in (fileHashes)
    | project Timestamp, FileHash = SHA256, SourceTable = "DeviceFileEvents"
),
(
    DeviceEvents
    | where SHA256 in (fileHashes)
    | project Timestamp, FileHash = SHA256, SourceTable = "DeviceEvents"
),
(
    DeviceImageLoadEvents
    | where SHA256 in (fileHashes)
    | project Timestamp, FileHash = SHA256, SourceTable = "DeviceImageLoadEvents"
),
(
    DeviceProcessEvents
    | where SHA256 in (fileHashes)
    | project Timestamp, FileHash = SHA256, SourceTable = "DeviceProcessEvents"
)
| order by Timestamp desc

Microsoft Sentinel

Microsoft Sentinel customers can use the TI Mapping analytics (a series of analytics all prefixed with ‘TI map’) to automatically match the malicious domain indicators mentioned in this blog post with data in their workspace. If the TI Map analytics are not currently deployed, customers can install the Threat Intelligence solution from the Microsoft Sentinel Content Hub to have the analytics rule deployed in their Sentinel workspace.

Indicators of compromise

Domains

  • subreviews.azurewebsites[.]net 
  • satellite2.azurewebsites[.]net 
  • nodetestservers.azurewebsites[.]net 
  • satellitegardens.azurewebsites[.]net 
  • softwareservicesupport.azurewebsites[.]net
  • getservicessuports.azurewebsites[.]net
  • getservicessupports.azurewebsites[.]net 
  • getsupportsservices.azurewebsites[.]net 
  • satellitespecialists.azurewebsites[.]net
  • satservicesdev.azurewebsites[.]net
  • servicessupports.azurewebsites[.]net
  • websupportprotection.azurewebsites[.]net 
  • supportsoftwarecenter.azurewebsites[.]net
  • centersoftwaresupports.azurewebsites[.]net
  • softwareservicesupports.azurewebsites[.]net
  • getsdervicessupoortss.azurewebsites[.]net
  • YAHSAT NETWORK_INFRASTRUCTURE_SECURITY_GUIDE_20240421.pdf.exe (SHA-256:  7eb2e9e8cd450fc353323fd2e8b84fbbdfe061a8441fd71750250752c577d198)
  • Sold.dll (SHA-256: ccb617cc7418a3b22179e00d21db26754666979b4c4f34c7fda8c0082d08cec4)
  • Batch script (SHA-256: 5df4269998ed79fbc997766303759768ce89ff1412550b35ff32e85db3c1f57b)
  • Malicious DLL (SHA-256: fb70ff49411ce04951895977acfc06fa468e4aa504676dedeb40ba5cea76f37f)
  • Malicious DLL (SHA-256: 711d3deccc22f5acfd3a41b8c8defb111db0f2b474febdc7f20a468f67db0350)

Learn more

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on LinkedIn at https://www.linkedin.com/showcase/microsoft-threat-intelligence and on X (formerly Twitter) at https://twitter.com/MsftSecIntel.

To hear stories and insights from the Microsoft Threat Intelligence community about the ever-evolving threat landscape, listen to the Microsoft Threat Intelligence podcast: https://thecyberwire.com/podcasts/microsoft-threat-intelligence.

The post Peach Sandstorm deploys new custom Tickler malware in long-running intelligence gathering operations appeared first on Microsoft Security Blog.

]]>
Midnight Blizzard: Guidance for responders on nation-state attack http://approjects.co.za/?big=en-us/security/blog/2024/01/25/midnight-blizzard-guidance-for-responders-on-nation-state-attack/ Fri, 26 Jan 2024 00:00:00 +0000 The Microsoft security team detected a nation-state attack on our corporate systems on January 12, 2024, and immediately activated our response process to investigate, disrupt malicious activity, mitigate the attack, and deny the threat actor further access. The Microsoft Threat Intelligence investigation identified the threat actor as Midnight Blizzard, the Russian state-sponsored actor also known as NOBELIUM.

The post Midnight Blizzard: Guidance for responders on nation-state attack appeared first on Microsoft Security Blog.

]]>
The Microsoft security team detected a nation-state attack on our corporate systems on January 12, 2024, and immediately activated our response process to investigate, disrupt malicious activity, mitigate the attack, and deny the threat actor further access. The Microsoft Threat Intelligence investigation identified the threat actor as Midnight Blizzard, the Russian state-sponsored actor also known as NOBELIUM. The latest information from the Microsoft Security and Response Center (MSRC) is posted here.

As stated in the MSRC blog, given the reality of threat actors that are well resourced and funded by nation states, we are shifting the balance we need to strike between security and business risk – the traditional sort of calculus is simply no longer sufficient. For Microsoft, this incident has highlighted the urgent need to move even faster.

If the same team were to deploy the legacy tenant today, mandatory Microsoft policy and workflows would ensure MFA and our active protections are enabled to comply with current policies and guidance, resulting in better protection against these sorts of attacks.

Microsoft was able to identify these attacks in log data by reviewing Exchange Web Services (EWS) activity and using our audit logging features, combined with our extensive knowledge of Midnight Blizzard. In this blog, we provide more details on Midnight Blizzard, our preliminary and ongoing analysis of the techniques they used, and how you may use this information pragmatically to protect, detect, and respond to similar threats in your own environment.

Using the information gained from Microsoft’s investigation into Midnight Blizzard, Microsoft Threat Intelligence has identified that the same actor has been targeting other organizations and, as part of our usual notification processes, we have begun notifying these targeted organizations.

It’s important to note that this investigation is still ongoing, and we will continue to provide details as appropriate.

Midnight Blizzard

Midnight Blizzard (also known as NOBELIUM) is a Russia-based threat actor attributed by the US and UK governments as the Foreign Intelligence Service of the Russian Federation, also known as the SVR. This threat actor is known to primarily target governments, diplomatic entities, non-governmental organizations (NGOs) and IT service providers, primarily in the US and Europe. Their focus is to collect intelligence through longstanding and dedicated espionage of foreign interests that can be traced to early 2018. Their operations often involve compromise of valid accounts and, in some highly targeted cases, advanced techniques to compromise authentication mechanisms within an organization to expand access and evade detection.

Midnight Blizzard is consistent and persistent in their operational targeting, and their objectives rarely change. Midnight Blizzard’s espionage and intelligence gathering activities leverage a variety of initial access, lateral movement, and persistence techniques to collect information in support of Russian foreign policy interests. They utilize diverse initial access methods ranging from stolen credentials to supply chain attacks, exploitation of on-premises environments to laterally move to the cloud, and exploitation of service providers’ trust chain to gain access to downstream customers. Midnight Blizzard is also adept at identifying and abusing OAuth applications to move laterally across cloud environments and for post-compromise activity, such as email collection. OAuth is an open standard for token-based authentication and authorization that enables applications to get access to data and resources based on permissions set by a user.

Midnight Blizzard is tracked by partner security vendors as APT29, UNC2452, and Cozy Bear.

Midnight Blizzard observed activity and techniques

Initial access through password spray

Midnight Blizzard utilized password spray attacks that successfully compromised a legacy, non-production test tenant account that did not have multifactor authentication (MFA) enabled. In a password-spray attack, the adversary attempts to sign into a large volume of accounts using a small subset of the most popular or most likely passwords. In this observed Midnight Blizzard activity, the actor tailored their password spray attacks to a limited number of accounts, using a low number of attempts to evade detection and avoid account blocks based on the volume of failures. In addition, as we explain in more detail below, the threat actor further reduced the likelihood of discovery by launching these attacks from a distributed residential proxy infrastructure. These evasion techniques helped ensure the actor obfuscated their activity and could persist the attack over time until successful.

Malicious use of OAuth applications

Threat actors like Midnight Blizzard compromise user accounts to create, modify, and grant high permissions to OAuth applications that they can misuse to hide malicious activity. The misuse of OAuth also enables threat actors to maintain access to applications, even if they lose access to the initially compromised account. Midnight Blizzard leveraged their initial access to identify and compromise a legacy test OAuth application that had elevated access to the Microsoft corporate environment. The actor created additional malicious OAuth applications. They created a new user account to grant consent in the Microsoft corporate environment to the actor controlled malicious OAuth applications. The threat actor then used the legacy test OAuth application to grant them the Office 365 Exchange Online full_access_as_app role, which allows access to mailboxes.

Collection via Exchange Web Services

Midnight Blizzard leveraged these malicious OAuth applications to authenticate to Microsoft Exchange Online and target Microsoft corporate email accounts.

Use of residential proxy infrastructure

As part of their multiple attempts to obfuscate the source of their attack, Midnight Blizzard used residential proxy networks, routing their traffic through a vast number of IP addresses that are also used by legitimate users, to interact with the compromised tenant and, subsequently, with Exchange Online. While not a new technique, Midnight Blizzard’s use of residential proxies to obfuscate connections makes traditional indicators of compromise (IOC)-based detection infeasible due to the high changeover rate of IP addresses.

Defense and protection guidance

Due to the heavy use of proxy infrastructure with a high changeover rate, searching for traditional IOCs, such as infrastructure IP addresses, is not sufficient to detect this type of Midnight Blizzard activity. Instead, Microsoft recommends the following guidance to detect and help reduce the risk of this type of threat:

Defend against malicious OAuth applications

  • Audit the current privilege level of all identities, users, service principals, and Microsoft Graph Data Connect applications (use the Microsoft Graph Data Connect authorization portal), to understand which identities are highly privileged. Privilege should be scrutinized more closely if it belongs to an unknown identity, is attached to identities that are no longer in use, or is not fit for purpose. Identities can often be granted privilege over and above what is required. Defenders should pay attention to apps with app-only permissions as those apps may have over-privileged access. Additional guidance for investigating compromised and malicious applications.
  • Audit identities that hold ApplicationImpersonation privileges in Exchange Online. ApplicationImpersonation allows a caller, such as a service principal, to impersonate a user and perform the same operations that the user themselves could perform. Impersonation privileges like this can be configured for services that interact with a mailbox on a user’s behalf, such as video conferencing or CRM systems. If misconfigured, or not scoped appropriately, these identities can have broad access to all mailboxes in an environment. Permissions can be reviewed in the Exchange Online Admin Center, or via PowerShell:
Get-ManagementRoleAssignment -Role ApplicationImpersonation -GetEffectiveUsers
  • Identify malicious OAuth apps using anomaly detection policies. Detect malicious OAuth apps that make sensitive Exchange Online administrative activities through App governance. Investigate and remediate any risky OAuth apps.
  • Implement conditional access app control for users connecting from unmanaged devices.
  • Midnight Blizzard has also been known to abuse OAuth applications in past attacks against other organizations using the EWS.AccessAsUser.All Microsoft Graph API role or the Exchange Online ApplicationImpersonation role to enable access to email. Defenders should review any applications that hold EWS.AccessAsUser.All and EWS.full_access_as_app permissions and understand whether they are still required in your tenant. If they are no longer required, they should be removed.
  • If you require applications to access mailboxes, granular and scalable access can be implemented using role-based access control for applications in Exchange Online. This access model ensures applications are only granted to the specific mailboxes required.

Protect against password spray attacks

Detection and hunting guidance

By reviewing Exchange Web Services (EWS) activity, combined with our extensive knowledge of Midnight Blizzard, we were able to identify these attacks in log data. We are sharing some of the same hunting methodologies here to help other defenders detect and investigate similar attack tactics and techniques, if leveraged against their organizations. The audit logging that Microsoft investigators used to discover this activity was also made available to a broader set of Microsoft customers last year.

Identity alerts and protection

Microsoft Entra ID Protection has several relevant detections that help organizations identify these techniques or additional activity that may indicate anomalous activity that needs to be investigated. The use of residential proxy network infrastructure by threat actors is generally more likely to generate Microsoft Entra ID Protection alerts due to inconsistencies in patterns of user behavior compared to legitimate activity (such as location, diversity of IP addresses, etc.) that may be beyond the control of the threat actor.

The following Microsoft Entra ID Protection alerts can help indicate threat activity associated with this attack:

  • Unfamiliar sign-in properties – This alert flags sign-ins from networks, devices, and locations that are unfamiliar to the user.
  • Password spray – A password spray attack is where multiple usernames are attacked using common passwords in a unified brute force manner to gain unauthorized access. This risk detection is triggered when a password spray attack has been successfully performed. For example, the attacker has successfully authenticated in the detected instance.
  • Threat intelligence – This alert indicates user activity that is unusual for the user or consistent with known attack patterns. This detection is based on Microsoft’s internal and external threat intelligence sources.
  • Suspicious sign-ins (workload identities) – This alert indicates sign-in properties or patterns that are unusual for the related service principal.

XDR and SIEM alerts and protection

Once an actor decides to use OAuth applications in their attack, a variety of follow-on activities can be identified in alerts to help organizations identify and investigate suspicious activity.

The following built-in Microsoft Defender for Cloud Apps alerts are automatically triggered and can help indicate associated threat activity:

  • App with application-only permissions accessing numerous emails – A multi-tenant cloud app with application-only permissions showed a significant increase in calls to the Exchange Web Services API specific to email enumeration and collection. The app might be involved in accessing and retrieving sensitive email data.
  • Increase in app API calls to EWS after a credential update – This detection generates alerts for non-Microsoft OAuth apps where the app shows a significant increase in calls to Exchange Web Services API within a few days after its certificates/secrets are updated or new credentials are added.
  • Increase in app API calls to EWS – This detection generates alerts for non-Microsoft OAuth apps that exhibit a significant increase in calls to the Exchange Web Serves  API. This app might be involved in data exfiltration or other attempts to access and retrieve data.
  • App metadata associated with suspicious mal-related activity – This detection generates alerts for non-Microsoft OAuth apps with metadata, such as name, URL, or publisher, that had previously been observed in apps with suspicious mail-related activity. This app might be part of an attack campaign and might be involved in exfiltration of sensitive information.
  • Suspicious user created an OAuth app that accessed mailbox items – A user that previously signed on to a medium- or high-risk session created an OAuth application that was used to access a mailbox using sync operation or multiple email messages using bind operation. An attacker might have compromised a user account to gain access to organizational resources for further attacks.

The following Microsoft Defender XDR alert can indicate associated activity:

  • Suspicious user created an OAuth app that accessed mailbox items – A user who previously signed in to a medium- or high-risk session created an OAuth application that was used to access a mailbox using sync operation or multiple email messages using bind operation. An attacker might have compromised a user account to gain access to organizational resources for further attacks.

February 5, 2024 update: A query that was not working for all customers has been removed.

Microsoft Defender XDR customers can run the following query to find related activity in their networks:

  • Find MailItemsAccessed or SaaS actions performed by a labeled password spray IP
CloudAppEvents 
| where Timestamp between (startTime .. endTime) 
| where isnotempty(IPTags) and not(IPTags has_any('Azure','Internal Network IP','branch office')) 
| where IPTags has_any ("Brute force attacker", "Password spray attacker", "malicious", "Possible Hackers") 

Microsoft Sentinel customers can use the following analytic rules to find related activity in their network.

  • Password spray attempts – This query helps identify evidence of password spray activity against Microsoft Entra ID applications.
  • OAuth application being granted full_access_as_app permission – This detection looks for the full_access_as_app permission being granted to an OAuth application with Admin Consent. This permission provides access to Exchange mailboxes via the EWS API and could be exploited to access sensitive data. The application granted this permission should be reviewed to ensure that it is necessary for the application’s function.
  • Addition of services principal/user with elevated permissions – This rule looks for a service principal being granted permissions that could be used to add a Microsoft Entra ID object or user account to an Admin directory role.
  • Offline access via OAuth for previously unknown Azure application – This rule alerts when a user consents to provide a previously unknown Azure application with offline access via OAuth. Offline access will provide the Azure app with access to the resources without requiring two-factor authentication. Consent to applications with offline access should generally be rare.

Microsoft Sentinel customers can also use this hunting query:

Learn more

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

Microsoft customers can use the following reports in Microsoft Defender Threat Intelligence to get the most up-to-date information about the threat actor, malicious activity, and techniques discussed in this blog. These reports provide the intelligence, protection information, and recommended actions to prevent, mitigate, or respond to associated threats found in customer environments:

February 13, 2024 minor update: Updated guidance in “Defend against malicious OAuth applications” section with clearer wording and links to additional resources.

The post Midnight Blizzard: Guidance for responders on nation-state attack appeared first on Microsoft Security Blog.

]]>
Threat actors misuse OAuth applications to automate financially driven attacks http://approjects.co.za/?big=en-us/security/blog/2023/12/12/threat-actors-misuse-oauth-applications-to-automate-financially-driven-attacks/ Tue, 12 Dec 2023 18:00:00 +0000 Microsoft Threat Intelligence presents cases of threat actors misusing OAuth applications as automation tools in financially motivated attacks.

The post Threat actors misuse OAuth applications to automate financially driven attacks appeared first on Microsoft Security Blog.

]]>
Threat actors are misusing OAuth applications as an automation tool in financially motivated attacks. OAuth is an open standard for token-based authentication and authorization that enables applications to get access to data and resources based on permissions set by a user. Threat actors compromise user accounts to create, modify, and grant high privileges to OAuth applications that they can misuse to hide malicious activity. The misuse of OAuth also enables threat actors to maintain access to applications even if they lose access to the initially compromised account.

In attacks observed by Microsoft Threat Intelligence, threat actors launched phishing or password spraying attacks to compromise user accounts that did not have strong authentication mechanisms and had permissions to create or modify OAuth applications. The threat actors misused the OAuth applications with high privilege permissions to deploy virtual machines (VMs) for cryptocurrency mining, establish persistence following business email compromise (BEC), and launch spamming activity using the targeted organization’s resources and domain name.

Microsoft continuously tracks attacks that misuse of OAuth applications for a wide range of malicious activity. This visibility enhances the detection of malicious OAuth applications via Microsoft Defender for Cloud Apps and prevents compromised user accounts from accessing resources via Microsoft Defender XDR and Microsoft Entra Identity Protection. In this blog post, we present cases where threat actors compromised user accounts and misused OAuth applications for their financially driven attacks, outline recommendations for organizations to mitigate such attacks, and provide detailed information on how Microsoft detects related activity:

OAuth applications to deploy VMs for cryptomining

Microsoft observed the threat actor tracked as Storm-1283 using a compromised user account to create an OAuth application and deploy VMs for cryptomining. The compromised account allowed Storm-1283 to sign in via virtual private network (VPN), create a new single-tenant OAuth application in Microsoft Entra ID named similarly as the Microsoft Entra ID tenant domain name, and add a set of secrets to the application. As the compromised account had an ownership role on an Azure subscription, the actor also granted Contributor’ role permission for the application to one of the active subscriptions using the compromised account.

The actor also leveraged existing line-of-business (LOB) OAuth applications that the compromised user account had access to in the tenant by adding an additional set of credentials to those applications. The actor initially deployed a small set of VMs in the same compromised subscriptions using one of the existing applications and initiated the cryptomining activity. The actor then later returned to deploy more VMs using the new application. Targeted organizations incurred compute fees ranging from 10,000 to 1.5 million USD from the attacks, depending on the actor’s activity and duration of the attack.

Storm-1283 looked to maintain the setup as long as possible to increase the chance of successful cryptomining activity. We assess that, for this reason, the actor used the naming convention [DOMAINNAME]_[ZONENAME]_[1-9] (the tenant name followed by the region name) for the VMs to avoid suspicion.  

A diagram of Storm-1283's attack chain involving the creation of VMs for cryptocurrency mining.
Figure 1. OAuth application for cryptocurrency mining attack chain

One of the ways to recognize the behavior of this actor is to monitor VM creation in Azure Resource Manager audit logs and look for the activity “Microsoft.Compute/virtualMachines/write” performed by an OAuth application. While the naming convention used by the actor may change in time, it may still include the domain name or region names like “east|west|south|north|central|japan|france|australia|canada|korea|uk|poland|brazil

Microsoft Threat Intelligence analysts were able to detect the threat actor’s actions and worked with the Microsoft Entra team to block the OAuth applications that were part of this attack. Affected organizations were also informed of the activity and recommended further actions.

OAuth applications for BEC and phishing

In another attack observed by Microsoft, a threat actor compromised user accounts and created OAuth applications to maintain persistence and to launch email phishing activity. The threat actor used an adversary-in-the-middle (AiTM) phishing kit to send a significant number of emails with varying subject lines and URLs to target user accounts in multiple organizations. In AiTM attacks, threat actors attempt to steal session tokens from their targets by sending phishing emails with a malicious URL that leads to a proxy server that facilitates a genuine authentication process.

A screenshot of a phishing email sent by the threat actor.
Figure 2. Snippet of sample phishing email sent by the threat actor

We observed the following email subjects used in the phishing emails:

  • <Username> shared “<Username> contracts” with you.
  • <Username> shared “<User domain>” with you.
  • OneDrive: You have received a new document today
  • <Username> Mailbox password expiry
  • Mailbox password expiry
  • <Username> You have Encrypted message
  • Encrypted message received

After the targets clicked the malicious URL in the email, they were redirected to the Microsoft sign-in page that was proxied by the threat actor’s proxy server. The proxy server set up by the threat actor allowed them to steal the token from the user’s session cookie. Later, the stolen token was leveraged to perform session cookie replay activity. Microsoft was able to confirm during further investigation that the compromised user account was flagged for risky sign-ins when the account was used to sign in from an unfamiliar location and from an uncommon user agent.

For persistence following business email compromise

In some cases, following the stolen session cookie replay activity, the actor leveraged the compromised user account to perform BEC financial fraud reconnaissance by opening email attachments in Microsoft Outlook Web Application (OWA) that contain specific keywords such as paymentandinvoice”. This action typically precedes financial fraud attacks where the threat actor seeks out financial conversations and attempts to socially engineer one party to modify payment information to an account under attacker control.

A diagram of the attack chain wherein the threat actor uses OAuth applications following BEC.
Figure 3. Attack chain for OAuth application misuse following BEC

Later, to maintain persistence and carry out malicious actions, the threat actor created an OAuth application using the compromised user account. The actor then operated under the compromised user account session to add new credentials to the OAuth application.  

For email phishing activity

In other cases, instead of performing BEC reconnaissance, the threat actor created multitenant OAuth applications following the stolen session cookie replay activity. The threat actor used the OAuth applications to maintain persistence, add new credentials, and then access Microsoft Graph API resource to read emails or send phishing emails.

A diagram of the attack chain wherein the threat actor misuses OAuth applications to send phishing emails.
Figure 4. Attack chain for OAuth application misuse for phishing

At the time of analysis, we observed that threat actor created around 17,000 multitenant OAuth applications across different tenants using multiple compromised user accounts. The created applications mostly had two different sets of application metadata properties, such as display name and scope:

  • Malicious multitenant OAuth applications with the display name set as “oauth” were granted permissions “user.read; mail.readwrite; email; profile; openid; mail.read; people.read” and access to Microsoft Graph API and read emails.
  • Malicious multitenant OAuth applications with the display name set as “App” were granted permissions “user.read; mail.readwrite; email; profile; openid; mail.send” and access to Microsoft Graph API to send high volumes of phishing emails to both intra-organizational and external organizations.
A screenshot of the phishing email sent by the threat actor.
Figure 5. Sample phishing email sent by the malicious OAuth application

In addition, we observed that the threat actor, before using the OAuth applications to send phishing emails, leveraged the compromised user accounts to create inbox rules with suspicious rule names like “…” to move emails to the junk folder and mark them as read. This is to evade detection by the compromised user that the account was used to send phishing emails.

A screenshot of the inbox rule created by the threat actor.
Figure 6. Inbox rule created by the threat actor using the compromised user account

Based on the email telemetry, we observed that the malicious OAuth applications created by the threat actor sent more than 927,000 phishing emails. Microsoft has taken down all the malicious OAuth applications found related to this campaign, which ran from July to November 2023.

OAuth applications for spamming activity

Microsoft also observed large-scale spamming activity through OAuth applications by a threat actor tracked as Storm-1286. The actor launched password spraying attacks to compromise user accounts, the majority of which did not have multifactor authentication (MFA) enabled. We also observed the user agent BAV2ROPC in the sign-in activities related to the compromised accounts, which indicated the use of legacy authentication protocols such as IMAP and SMTP that do not support MFA.

We observed the actor using the compromised user accounts to create anywhere from one to three new OAuth applications in the targeted organization using Azure PowerShell or a Swagger Codegen-based client. The threat actor then granted consent to the applications using the compromised accounts. These applications were set with permissions like email, profile, openid, Mail.Send, User.Read and Mail.Read, which allowed the actor to control the mailbox and send thousands of emails a day using the compromised user account and the organization domain. In some cases, the actor waited for months after the initial access and setting up of OAuth applications before starting the spam activity using the applications. The actor also used legitimate domains to avoid phishing and spamming detectors.

A diagram of the attack chain wherein Storm-1286 misuses OAuth applications for a large-scale spam attack.
Figure 7. Attack chain for large-scale spam using OAuth applications

In previous large-scale spam activities, we observed threat actors attempting to compromise admin accounts without MFA and create new LOB applications with high administrative permissions to abuse Microsoft Exchange Online and spread spam. While the activity of the actor then was limited due to actions taken by Microsoft Threat Intelligence such as blocking clusters of the OAuth applications in the past, Storm-1286 continues to try new ways to set a similar high-scale spamming platform in victim organizations by using non-privileged users.

Mitigation steps

Microsoft recommends the following mitigations to reduce the impact of these types of threats.

Mitigate credential guessing attacks risks

A key step in reducing the attack surface is securing the identity infrastructure. The most common initial access vector observed in this attack was account compromise through credential stuffing, phishing, and reverse proxy (AiTM) phishing. In most cases the compromised accounts did not have MFA enabled. Implementing security practices that strengthen account credentials such as enabling MFA reduced the chance of attack dramatically.

Enable conditional access policies

Conditional access policies are evaluated and enforced every time the user attempts to sign in. Organizations can protect themselves from attacks that leverage stolen credentials by enabling policies for User and Sign-in Risk, device compliance and trusted IP address requirements. If your organization has a Microsoft-Managed Conditional Access policy, make sure it is enforced.

Ensure continuous access evaluation is enabled

Continuous access evaluation (CAE) revokes access in real time when changes in user conditions trigger risks, such as when a user is terminated or moves to an untrusted location.

Enable security defaults

While some of the features mentioned above require paid subscriptions, the security defaults in Azure AD, which is mainly for organizations using the free tier of Azure Active Directory licensing, are sufficient to better protect the organizational identity platform, as they provide preconfigured security settings such as MFA, protection for privileged activities, and others.

Enable Microsoft Defender automatic attack disruption

Microsoft Defender automatic attack disruption capabilities minimize lateral movement and curbs the overall impact of an attack in its initial stages.

Audit apps and consented permissions

Audit apps and consented permissions in your organization ensure applications are only accessing necessary data and adhering to the principles of least privilege. Use Microsoft Defender for Cloud Apps and its app governance add-on for expanded visibility into cloud activity in your organization and control over applications that access your Microsoft 365 data. 

Educate your organization on application permissions and data accessible by applications with respective permissions to identify malicious apps. 

Enhance suspicious OAuth application investigation with the recommended approach to investigate and remediate risky OAuth apps.

Enable “Review admin consent requests” for forcing new applications review in the tenant.

In addition to the recommendations above, Microsoft has published incident response playbooks for App consent grant investigation and compromised and malicious applications investigation that defenders can use to respond quickly to related threats.

Secure Azure Cloud resources

Deploy MFA to all users, especially for tenant administrators and accounts with Azure VM Contributor privileges. Limit unused quota and monitor for unusual quota increases in your Azure subscriptions, with an emphasis on the resource’s originating creation or modification. Monitor for unexpected sign-in activity from IP addresses associated with free VPN services on high privilege accounts. Connect Microsoft Defender for Cloud Apps connector to ARM or use Microsoft Defender for ARM

With the rise of hybrid work, employees might use their personal or unmanaged devices to access corporate resources, leading to an increased possibility of token theft. To mitigate this risk, organizations can enhance their security measures by obtaining complete visibility into their users’ authentication methods and locations. Refer to the comprehensive blog post Token tactics: How to prevent, detect, and respond to cloud token theft. 

Check your Office 365 email filtering settings to ensure you block spoofed emails, spam, and emails with malware. Use for enhanced phishing protection and coverage against new threats and polymorphic variants. Configure Defender for Office 365 to recheck links upon time of click and delete sent mail in response to newly acquired threat intelligence. Turn on Safe Attachments policies to check attachments in inbound emails. 

Detections for related techniques

Leveraging its cross-signal capabilities, Microsoft Defender XDR alerts customers using Microsoft Defender for Office 365, Microsoft Defender for Cloud Apps, Application governance add-on, Microsoft Defender for Cloud, and Microsoft Entra ID Protection to detect the techniques covered in the attack through the attack chain. Each product can provide a different aspect for protection to cover the techniques observed in this attack:

Microsoft Defender XDR

Microsoft Defender XDR detects threat components associated with the following activities:

  • User compromised in AiTM phishing attack
  • User compromised via a known AiTM phishing kit
  • BEC financial fraud-related reconnaissance
  • BEC financial fraud

Microsoft Defender for Cloud Apps

Using Microsoft Defender for Cloud Apps connectors for Microsoft 365 and Azure, Microsoft Defender XDR raises the following alerts:

  • Stolen session cookie was used
  • Activity from anonymous IP address
  • Activity from a password-spray associated IP address
  • User added or updated a suspicious OAuth app
  • Risky user created or updated an app that was observed creating a bulk of Azure virtual machines in a short interval
  • Risky user updated an app that accessed email and performed email activity through Graph API
  • Suspicious creation of OAuth app by compromised user
  • Suspicious secret addition to OAuth app followed by creation of Azure virtual machines
  • Suspicious OAuth app creation
  • Suspicious OAuth app email activity through Graph API
  • Suspicious OAuth app-related activity by compromised user
  • Suspicious user signed into a newly created OAuth app
  • Suspicious addition of OAuth app permissions
  • Suspicious inbox manipulation rule
  • Impossible travel activity
  • Multiple failed login attempts

App governance

App governance is an add-on to Microsoft Defender for Cloud Apps, which can detect malicious OAuth applications that make sensitive Exchange Online administrative activities along with other threat detection alerts. Activity related to this campaign triggers the following alerts:

  • Entra Line-of-Business app initiating an anomalous spike in virtual machine creation
  • OAuth app with high scope privileges in Microsoft Graph was observed initiating virtual machine creation
  • Suspicious OAuth app used to send numerous emails

To receive this alert, turn on app governance for Microsoft Defender for Cloud Apps.

Microsoft Defender for Office 365

Microsoft Defender for Office 365 detects threat activity associated with this spamming campaign through the following email security alerts. Note, however, that these alerts may also be triggered by unrelated threat activity. We’re listing them here because we recommend that these alerts be investigated and remediated immediately.

  • A potentially malicious URL click was detected
  • A user clicked through to a potentially malicious URL
  • Suspicious email sending patterns detected
  • User restricted from sending email
  • Email sending limit exceeded

Microsoft Defender for Cloud

Microsoft Defender for Cloud detects threat components associated with the activities outlined in this article with the following alerts:

  • Azure Resource Manager operation from suspicious proxy IP address
  • Crypto-mining activity
  • Digital currency mining activity
  • Suspicious Azure role assignment detected
  • Suspicious creation of compute resources detected
  • Suspicious invocation of a high-risk ‘Execution’ operation by a service principal detected
  • Suspicious invocation of a high-risk ‘Execution’ operation detected
  • Suspicious invocation of a high-risk ‘Impact’ operation by a service principal detected

Microsoft Entra Identity Protection

Microsoft Entra Identity Protection detects the threats described with the following alerts:

  • Anomalous Token
  • Unfamiliar sign-in properties
  • Anonymous IP address
  • Verified threat actor IP
  • Atypical travel

Hunting guidance

Microsoft 365 Defender

Microsoft 365 Defender customers can run the following query to find related activity in their networks:

OAuth application interacting with Azure workloads

let OAuthAppId = <OAuth app ID in question>;
CloudAppEvents
| where Timestamp >ago (7d)  
| where AccountId == OAuthAppId 
| where AccountType== "Application"
| extend Azure_Workloads = RawEventData["operationName"]
| distinct Azure_Workloads by AccountId

Password spray attempts

This query identifies failed sign-in attempts to Microsoft Exchange Online from multiple IP addresses and locations.

IdentityLogonEvents
| where Timestamp > ago(3d)
| where ActionType == "LogonFailed" and LogonType == "OAuth2:Token" and Application == "Microsoft Exchange Online"
| summarize count(), dcount(IPAddress), dcount(CountryCode) by AccountObjectId, AccountDisplayName, bin(Timestamp, 1h)

Suspicious application creation

This query finds new applications added in your tenant.

CloudAppEvents
| where ActionType in ("Add application.", "Add service principal.")
| mvexpand modifiedProperties = RawEventData.ModifiedProperties
| where modifiedProperties.Name == "AppAddress"
| extend AppAddress = tolower(extract('\"Address\": \"(.*)\",',1,tostring(modifiedProperties.NewValue)))
| mvexpand ExtendedProperties = RawEventData.ExtendedProperties
| where ExtendedProperties.Name == "additionalDetails"
| extend OAuthApplicationId = tolower(extract('\"AppId\":\"(.*)\"',1,tostring(ExtendedProperties.Value)))
| project Timestamp, ReportId, AccountObjectId, Application, ApplicationId, OAuthApplicationId, AppAddress

Suspicious email events

NOTE: These queries need to be updated with timestamps related to application creation time before running.

//Identify High Outbound Email Sender
EmailEvents 
| where Timestamp between (<start> .. <end>) //Timestamp from the app creation time to few hours upto 24 hours or more 
| where EmailDirection in ("Outbound") 
| project
    RecipientEmailAddress,
    SenderFromAddress,
    SenderMailFromAddress,
    SenderObjectId,
    NetworkMessageId 
| summarize
    RecipientCount = dcount(RecipientEmailAddress),
    UniqueEmailSentCount = dcount(NetworkMessageId)
    by SenderFromAddress, SenderMailFromAddress, SenderObjectId
| sort by UniqueEmailSentCount desc 
//| where UniqueEmailSentCount > <threshold> //Optional, return only if the sender sent more than the threshold
//| take 100 //Optional, return only top 100
 
//Identify Suspicious Outbound Email Sender
EmailEvents 
//| where Timestamp between (<start> .. <end>) //Timestamp from the app creation time to few hours upto 24 hours or more 
| where EmailDirection in ("Outbound") 
| project
    RecipientEmailAddress,
    SenderFromAddress,
    SenderMailFromAddress,
    SenderObjectId, 
    DetectionMethods,
    NetworkMessageId 
| summarize
    RecipientCount = dcount(RecipientEmailAddress),
    UniqueEmailSentCount = dcount(NetworkMessageId),
    SuspiciousEmailCount = dcountif(NetworkMessageId,isnotempty(DetectionMethods))
    by SenderFromAddress, SenderMailFromAddress, SenderObjectId
| extend SuspiciousEmailPercentage = SuspiciousEmailCount/UniqueEmailSentCount * 100 //Calculate the percentage of suspicious email compared to all email sent
| sort by SuspiciousEmailPercentage desc 
//| where UniqueEmailSentCount > <threshold> //Optional, return only if the sender suspicious email percentage is more than the threshold
//| take 100 //Optional, return only top 100

//Identify Recent Emails Sent by Restricted Email Sender
AlertEvidence
| where Title has "User restricted from sending email"
| project AccountObjectId //Identify the user who are restricted to send email
| join EmailEvents on $left.AccountObjectId == $right.SenderObjectId //Join information from Alert Evidence and Email Events
| project
    Timestamp,
    RecipientEmailAddress,
    SenderFromAddress,
    SenderMailFromAddress,
    SenderObjectId,
    SenderIPv4,
    Subject,
    UrlCount,
    AttachmentCount,
    DetectionMethods,
    AuthenticationDetails, 
    NetworkMessageId
| sort by Timestamp desc 
//| take 100 //Optional, return only first 100

BEC recon and OAuth application activity

//High and Medium risk SignIn activity
AADSignInEventsBeta
| where Timestamp >ago (7d)
| where ErrorCode==0
| where RiskLevelDuringSignIn >= 50
| project
    AccountUpn,
    AccountObjectId,
    SessionId,
    RiskLevelDuringSignIn,
    ApplicationId,
    Application

//Oauth Application creation or modification by user who has suspicious sign in activities
AADSignInEventsBeta
| where Timestamp >ago (7d)
| where ErrorCode == 0
| where RiskLevelDuringSignIn >= 50
| project SignInTime=AccountUpn, AccountObjectId, SessionId, RiskLevelDuringSignIn, ApplicationId, Application
| join kind=leftouter (CloudAppEvents | where Timestamp > ago(7d)
| where ActionType in ("Add application.", "Update application.", "Update application – Certificates and secrets management ")
| extend appId = tostring(parse_json(RawEventData.Target[4].ID))
| project
    Timestamp,
    ActionType,
    Application,
    ApplicationId,
    UserAgent,
    ISP,
    AccountObjectId,
    AppName=ObjectName,
    OauthApplicationId=appId,
    RawEventData ) on AccountObjectId
| where isnotempty(ActionType)

 
//Suspicious BEC reconnaisance activity 
let bec_keywords = pack_array("payment", "receipt", "invoice", "inventory"); 
let reconEvents = 
    CloudAppEvents
    | where Timestamp >ago (7d)
    | where ActionType in ("MailItemsAccessed", "Update")
    | where AccountObjectId in ("<Impacted AccountObjectId>")
    | extend SessionId = tostring(parse_json(RawEventData.SessionId))
    | project
        Timestamp,
        ActionType,
        AccountObjectId,
        UserAgent,
        ISP,
        IPAddress,
        SessionId,
        RawEventData;
reconEvents;
let updateActions = reconEvents
    | where ActionType == "Update" 
    | extend Subject=tostring(RawEventData["Item"].Subject)
    | where isnotempty(Subject)
    | where Subject has_any (bec_keywords)
    | summarize UpdateCount=count() by bin (Timestamp, 15m), Subject, AccountObjectId, SessionId, IPAddress;
updateActions;
let mailItemsAccessedActions = reconEvents 
    | where ActionType == "MailItemsAccessed" 
    | extend OperationCount = toint(RawEventData["OperationCount"])
    | summarize TotalCount = sum(OperationCount) by bin (Timestamp, 15m), AccountObjectId, SessionId, IPAddress;
mailItemsAccessedActions;
 
//SignIn to newly created app within Risky Session
AADSignInEventsBeta
| where Timestamp >ago (7d) 
| where AccountObjectId in ("<Impacted AccountObjectId>") and 
SessionId in ("<Risky Session Id>")
| where ApplicationId in ("<Oauth appId>") // Recently added or modified App Id
| project
    AccountUpn,
    AccountObjectId,
    ApplicationId,
    Application,
    SessionId,
    RiskLevelDuringSignIn,
    RiskLevelAggregated,
    Country

// To check suspicious Mailbox rules
CloudAppEvents
| where Timestamp between (start .. end) //Timestamp from the app creation time to few hours, usually before spam emails sent
| where AccountObjectId in ("<Impacted AccountObjectId>")
| where Application == "Microsoft Exchange Online"
| where ActionType in ("New-InboxRule", "Set-InboxRule", "Set-Mailbox", "Set-TransportRule", "New-TransportRule", "Enable-InboxRule", "UpdateInboxRules")
| where isnotempty(IPAddress)
| mvexpand ActivityObjects
| extend name = parse_json(ActivityObjects).Name
| extend value = parse_json(ActivityObjects).Value
| where name == "Name"
| extend RuleName = value 
| project Timestamp, ReportId, ActionType, AccountObjectId, IPAddress, ISP, RuleName

// To check any suspicious Url clicks from emails before risky signin by the user
UrlClickEvents
| where Timestamp between (start .. end) //Timestamp around time proximity of Risky signin by user
| where AccountUpn has "<Impacted User’s UPN or Email address>" and ActionType has "ClickAllowed"
| project Timestamp,Url,NetworkMessageId

// To fetch the suspicious email details
EmailEvents
| where Timestamp between (start .. end) //Timestamp lookback to be increased gradually to find the email received
| where EmailDirection has "Inbound"
| where RecipientEmailAddress has "<Impacted User’s UPN or Email address>" and NetworkMessageId == "<NetworkMessageId from UrlClickEvents>"
| project SenderFromAddress,SenderMailFromAddress,SenderIPv4,SenderFromDomain, Subject,UrlCount,AttachmentCount
    
    
// To check if suspicious emails sent for spamming (with similar email subjects, urls etc.)
EmailEvents
| where Timestamp between (start .. end) //Timestamp from the app creation time to few hours upto 24 hours or more
| where EmailDirection in ("Outbound","Intra-org")
| where SenderFromAddress has "<Impacted User’s UPN or Email address>"  or SenderMailFromAddress has "<Impacted User’s UPN or Email address>"
| project RecipientEmailAddress,RecipientObjectId,SenderIPv4,SenderFromDomain, Subject,UrlCount,AttachmentCount,NetworkMessageId

Microsoft Sentinel

Microsoft Sentinel customers can use the TI Mapping analytics (a series of analytics all prefixed with ‘TI map’) to automatically match the malicious domain indicators mentioned in this blog post with data in their workspace. If the TI Map analytics are not currently deployed, customers can install the Threat Intelligence solution from the Microsoft Sentinel Content Hub to have the analytics rule deployed in their Sentinel workspace.

Analytic rules:

Hunting queries:

Learn more

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on LinkedIn at https://www.linkedin.com/showcase/microsoft-threat-intelligence, and on X (formerly Twitter) at https://twitter.com/MsftSecIntel.

To hear stories and insights from the Microsoft Threat Intelligence community about the ever-evolving threat landscape, listen to the Microsoft Threat Intelligence podcast: https://thecyberwire.com/podcasts/microsoft-threat-intelligence.

The post Threat actors misuse OAuth applications to automate financially driven attacks appeared first on Microsoft Security Blog.

]]>
Octo Tempest crosses boundaries to facilitate extortion, encryption, and destruction http://approjects.co.za/?big=en-us/security/blog/2023/10/25/octo-tempest-crosses-boundaries-to-facilitate-extortion-encryption-and-destruction/ Wed, 25 Oct 2023 16:30:00 +0000 Microsoft has been tracking activity related to the financially motivated threat actor Octo Tempest, whose evolving campaigns represent a growing concern for many organizations across multiple industries.

The post Octo Tempest crosses boundaries to facilitate extortion, encryption, and destruction appeared first on Microsoft Security Blog.

]]>
Microsoft has been tracking activity related to the financially motivated threat actor Octo Tempest, whose evolving campaigns represent a growing concern for organizations across multiple industries. Octo Tempest leverages broad social engineering campaigns to compromise organizations across the globe with the goal of financial extortion. With their extensive range of tactics, techniques, and procedures (TTPs), the threat actor, from our perspective, is one of the most dangerous financial criminal groups.

OCTO TEMPEST: Hybrid identity compromise recovery

Read the Microsoft Incident Response playbook

Octo Tempest is a financially motivated collective of native English-speaking threat actors known for launching wide-ranging campaigns that prominently feature adversary-in-the-middle (AiTM) techniques, social engineering, and SIM swapping capabilities. Octo Tempest, which overlaps with research associated with 0ktapus, Scattered Spider, and UNC3944, was initially seen in early 2022, targeting mobile telecommunications and business process outsourcing organizations to initiate phone number ports (also known as SIM swaps). Octo Tempest monetized their intrusions in 2022 by selling SIM swaps to other criminals and performing account takeovers of high-net-worth individuals to steal their cryptocurrency.

A graphical representation of Octo Tempest's evolution from early 2022 to mid 2023.
Figure 1. The evolution of Octo Tempest’s targeting, actions, outcomes, and monetization

Building on their initial success, Octo Tempest harnessed their experience and acquired data to progressively advance their motives, targeting, and techniques, adopting an increasingly aggressive approach. In late 2022 to early 2023, Octo Tempest expanded their targeting to include cable telecommunications, email, and technology organizations. During this period, Octo Tempest started monetizing intrusions by extorting victim organizations for data stolen during their intrusion operations and in some cases even resorting to physical threats.

In mid-2023, Octo Tempest became an affiliate of ALPHV/BlackCat, a human-operated ransomware as a service (RaaS) operation, and initial victims were extorted for data theft (with no ransomware deployment) using ALPHV Collections leak site. This is notable in that, historically, Eastern European ransomware groups refused to do business with native English-speaking criminals. By June 2023, Octo Tempest started deploying ALPHV/BlackCat ransomware payloads (both Windows and Linux versions) to victims and lately has focused their deployments primarily on VMWare ESXi servers. Octo Tempest progressively broadened the scope of industries targeted for extortion, including natural resources, gaming, hospitality, consumer products, retail, managed service providers, manufacturing, law, technology, and financial services.  

In recent campaigns, we observed Octo Tempest leverage a diverse array of TTPs to navigate complex hybrid environments, exfiltrate sensitive data, and encrypt data. Octo Tempest leverages tradecraft that many organizations don’t have in their typical threat models, such as SMS phishing, SIM swapping, and advanced social engineering techniques. This blog post aims to provide organizations with an insight into Octo Tempest’s tradecraft by detailing the fluidity of their operations and to offer organizations defensive mechanisms to thwart the highly motivated financial cybercriminal group.

Analysis 

The well-organized, prolific nature of Octo Tempest’s attacks is indicative of extensive technical depth and multiple hands-on-keyboard operators. The succeeding sections cover the wide range of TTPs we observed being used by Octo Tempest.

A graphical image summarizing the list of TTPs used by Octo Tempest as discussed in this blog post.
Figure 2. Octo Tempest TTPs

Initial access 

Social engineering with a twist

Octo Tempest commonly launches social engineering attacks targeting technical administrators, such as support and help desk personnel, who have permissions that could enable the threat actor to gain initial access to accounts. The threat actor performs research on the organization and identifies targets to effectively impersonate victims, mimicking idiolect on phone calls and understanding personal identifiable information to trick technical administrators into performing password resets and resetting multifactor authentication (MFA) methods. Octo Tempest has also been observed impersonating newly hired employees in these attempts to blend into normal on-hire processes.

Octo Tempest primarily gains initial access to an organization using one of several methods:

  • Social engineering
    • Calling an employee and socially engineering the user to either:
      • Install a Remote Monitoring and Management (RMM) utility
      • Navigate to a site configured with a fake login portal using an adversary-in-the-middle toolkit
      • Remove their FIDO2 token
    • Calling an organization’s help desk and socially engineering the help desk to reset the user’s password and/or change/add a multi-factor authentication token/factor
  • Purchasing an employee’s credentials and/or session token(s) on a criminal underground market
  • SMS phishing employee phone numbers with a link to a site configured with a fake login portal using an adversary-in-the-middle toolkit
  • Using the employee’s pre-existing access to mobile telecommunications and business process outsourcing organizations to initiate a SIM swap or to set up call number forwarding on an employee’s phone number. Octo Tempest will initiate a self-service password reset of the user’s account once they have gained control of the employee’s phone number.

In rare instances, Octo Tempest resorts to fear-mongering tactics, targeting specific individuals through phone calls and texts. These actors use personal information, such as home addresses and family names, along with physical threats to coerce victims into sharing credentials for corporate access.

Two screenshots of a phone screen presented side by side. The screens present a series of threatening text messages sent by Octo Tempest to their targets/
Figure 3. Threats sent by Octo Tempest to targets

Reconnaissance and discovery 

Crossing borders for identity, architecture, and controls enumeration

In the early stage of their attacks, Octo Tempest performs various enumeration and information gathering actions to pursue advanced access in targeted environments and abuses legitimate channels for follow-on actions later in the attack sequence. Initial bulk-export of users, groups, and device information is closely followed by enumerating data and resources readily available to the user’s profile within virtual desktop infrastructure or enterprise-hosted resources. 

Frequently, Octo Tempest uses their access to carry out broad searches across knowledge repositories to identify documents related to network architecture, employee onboarding, remote access methods, password policies, and credential vaults.

Octo Tempest then performs exploration through multi-cloud environments enumerating access and resources across cloud environments, code repositories, server and backup management infrastructure, and others. In this stage, the threat actor validates access, enumerates databases and storage containers, and plans footholds to aid further phases of the attack.

Additional tradecraft and techniques:

  • PingCastle and ADRecon to perform reconnaissance of Active Directory 
  • Advanced IP Scanner to probe victim networks
  • Govmomi Go library to enumerate vCenter APIs 
  • PureStorage FlashArray PowerShell module to enumerate storage arrays 
  • AAD bulk downloads of user, groups, and devices

Privilege escalation and credential access

Octo Tempest commonly elevates their privileges within an organization through the following techniques:

  • Using their pre-existing access to mobile telecommunications and business process outsourcing organizations to initiate a SIM swap or to set up call number forwarding on an employee’s phone number. Octo Tempest will initiate a self-service password reset of the user’s account once they have gained control of the employee’s phone number.
  • Social engineering – calling an organization’s help desk and socially engineering the help desk to reset an administrator’s password and/or change/add a multi-factor authentication token/factor

Further masquerading and collection for escalation

Octo Tempest employs an advanced social engineering strategy for privilege escalation, harnessing stolen password policy procedures, bulk downloads of user, group, and role exports, and their familiarity with the target organizations procedures. The actor’s privilege escalation tactics often rely on building trust through various means, such as leveraging possession of compromised accounts and demonstrating an understanding of the organization’s procedures. In some cases, they go as far as bypassing password reset procedures by using a compromised manager’s account to approve their requests.

Octo Tempest continually seeks to collect additional credentials across all planes of access. Using open-source tooling like Jercretz and TruffleHog, the threat actor automates the identification of plaintext keys, secrets, and credentials across code repositories for further use.

Additional tradecraft and techniques:

  • Modifying access policies or using MicroBurst to gain access to credential stores
  • Using open-source tooling: Mimikatz, Hekatomb, Lazagne, gosecretsdump, smbpasswd.py, LinPEAS, ADFSDump
  • Using VMAccess Extension to reset passwords or modify configurations of Azure VMs
  • Creating snapshots virtual domain controller disks to download and extract NTDS.dit
  • Assignment of User Access Administrator role to grant Tenant Root Group management scope

Defense evasion

Security product arsenal sabotage

Octo Tempest compromises security personnel accounts within victim organizations to turn off security products and features and attempt to evade detection throughout their compromise. Using compromised accounts, the threat actor leverages EDR and device management technologies to allow malicious tooling, deploy RMM software, remove or impair security products, data theft of sensitive files (e.g. files with credentials, signal messaging databases, etc.), and deploy malicious payloads.

To prevent identification of security product manipulation and suppress alerts or notifications of changes, Octo Tempest modifies the security staff mailbox rules to automatically delete emails from vendors that may raise the target’s suspicion of their activities.

A screenshot of the inbox rule created by Octo Tempest.
Figure 4. Inbox rule created by Octo Tempest to delete emails from vendors

Additional tradecraft and techniques:

  • Using open-source tooling like privacy.sexy framework to disable security products
  • Enrolling actor-controlled devices into device management software to bypass controls
  • Configuring trusted locations in Conditional Access Policies to expand access capabilities
  • Replaying harvested tokens with satisfied MFA claims to bypass MFA

Persistence 

Sustained intrusion with identities and open-source tools

Octo Tempest leverages publicly available security tools to establish persistence within victim organizations, largely using account manipulation techniques and implants on hosts. For identity-based persistence, Octo Tempest targets federated identity providers using tools like AADInternals to federate existing domains, or spoof legitimate domains by adding and then federating new domains. The threat actor then abuses this federation to generate forged valid security assertion markup language (SAML) tokens for any user of the target tenant with claims that have MFA satisfied, a technique known as Golden SAML. Similar techniques have also been observed using Okta as their source of truth identity provider, leveraging Okta Org2Org functionality to impersonate any desired user account.

To maintain access to endpoints, Octo Tempest installs a wide array of legitimate RMM tools and makes required network modifications to enable access. The usage of reverse shells is seen across Octo Tempest intrusions on both Windows and Linux endpoints. These reverse shells commonly initiate connections to the same attacker infrastructure that deployed the RMM tools.

A screenshot of reverse shellcode used by Octo Tempest
A screenshot of reverse shellcode used by Octo Tempest
Figure 5. Reverse shellcode used by Octo Tempest

A unique technique Octo Tempest uses is compromising VMware ESXi infrastructure, installing the open-source Linux backdoor Bedevil, and then launching VMware Python scripts to run arbitrary commands against housed virtual machines.

Additional tradecraft and techniques:

Actions on objectives

Common trifecta: Data theft, extortion, and ransomware

The goal of Octo Tempest remains financially motivated, but the monetization techniques observed across industries vary between cryptocurrency theft and data exfiltration for extortion and ransomware deployment.

Like in most cyberattacks, data theft largely depends on the data readily available to the threat actor. Octo Tempest accesses data from code repositories, large document management and storage systems, including SharePoint, SQL databases, cloud storage blobs/buckets, and email, using legitimate management clients such as DBeaver, MongoDB Compass, Azure SQL Query Editor, and Cerebrata for the purpose of connection and collection. After data harvesting, the threat actor employs anonymous file-hosting services, including GoFile.io, shz.al, StorjShare, Temp.sh, MegaSync, Paste.ee, Backblaze, and AWS S3 buckets for data exfiltration.

Octo Tempest employs a unique technique using the data movement platform Azure Data Factory and automated pipelines to extract data to external actor hosted Secure File Transfer Protocol (SFTP) servers, aiming to blend in with typical big data operations. Additionally, the threat actor commonly registers legitimate Microsoft 365 backup solutions such as Veeam, AFI Backup, and CommVault to export the contents of SharePoint document libraries and expedite data exfiltration.

Ransomware deployment closely follows data theft objectives. This activity targets both Windows and Unix/Linux endpoints and VMware hypervisors using a variant of ALPHV/BlackCat. Encryption at the hypervisor level has shown significant impact to organizations, making recovery efforts difficult post-encryption.

Octo Tempest frequently communicates with target organizations and their personnel directly after encryption to negotiate or extort the ransom—providing “proof of life” through samples of exfiltrated data. Many of these communications have been leaked publicly, causing significant reputational damage to affected organizations.

Additional tradecraft and techniques:

  • Use of the third-party services like FiveTran to extract copies of high-value service databases, such as SalesForce and ZenDesk, using API connectors
  • Exfiltration of mailbox PST files and mail forwarding to external mailboxes

Recommendations

Hunting methodology

Octo Tempest’s utilization of social engineering, living-off-the land techniques, and diverse toolsets could make hunting slightly unorthodox. Following these general guidelines alongside robust deconfliction with legitimate users will surface their activity:

Identity

  • Understand authentication flows in the environment.
  • Centralize visibility of administrative changes in the environment into a single pane of glass.
  • Scrutinize all user and sign-in risk detections for any administrator within the timeframe. Common alerts that are surfaced during an Octo Tempest intrusion include (but not limited to): Impossible Travel, Unfamiliar Sign-in Properties, and Anomalous Token
  • Review the coverage of Conditional Access policies; scrutinize the use of trusted locations and exclusions.
  • Review all existing and new custom domains in the tenant, and their federation settings.
  • Scrutinize administrator groups, roles, and privileges for recent modification.
  • Review recently created Microsoft Entra ID users and registered device identities.
  • Look for any anomalous pivots into organizational apps that may hold sensitive data, such as Microsoft SharePoint and OneDrive.

Azure

  • Leverage and continuously monitor Defender for Cloud for Azure Workloads, providing a wealth of information around unauthorized resource access.
  • Review Azure role-based access control (RBAC) definitions across the management group, subscription, resource group and resource structure.
  • Review the public network exposure of resources and revoke any unauthorized modifications.
  • Review both data plane and management plane access control for all critical workloads such as those that hold credentials and organizational data, like Key Vaults, storage accounts, and database resources.
  • Tightly control access to identity workloads that issue access organizational resources such as Active Directory Domain Controllers.
  • Review the Azure Activity log for anomalous modification of resources.

Endpoints

  • Look for recent additions to the indicators or exclusions of the EDR solution in place at the organization.
  • Review any generation of offboarding scripts.
  • Review access control within security products and EDR software suites.
  • Scrutinize any tools used to manage endpoints (SCCM, Intune, etc.) and look for recent rule additions, packages, or deployments.
  • Scrutinize use of remote administration tools across the environment, paying particular attention to recent installations regardless of whether they are used legitimately within the network already.
  • Ensure monitoring at the network boundary is in place, that alerting is in place for connections with common anonymizing services and scrutinize the use of these services.

Defending against Octo Tempest activity

Align privilege in Microsoft Entra ID and Azure

Privileges spanning Microsoft Entra ID and Azure need to be holistically aligned, with purposeful design decisions to prevent unauthorized access to critical workloads. Reducing the number of users with permanently assigned critical roles is paramount to achieving this. Segregation of privilege between on-premises and cloud is also necessary to sever the ability to pivot within the environment.

It is highly recommended to implement Microsoft Entra Privileged Identity Management (PIM) as a central location for the management of both Microsoft Entra ID roles and Azure RBAC. For all critical roles, at minimum:

  • Implement role assignments as eligible rather than permanent.
  • Review and understand the role definition Actions and NotActions – ensure to select only the roles with actions that the user requires to do their role (least privileged access).
  • Configure these roles to be time-bound, deactivating after a specific timeframe.
  • Require users to perform MFA to elevate to the role.
  • Optionally require users to provide justification or a ticket number upon elevation.
  • Enable notifications for privileged role elevation to a subset of administrators.
  • Utilize PIM Access Reviews to reduce standing access in the organization on a periodic basis.

Every organization is different and, therefore, roles will be classified differently in terms of their criticality. Consider the scope of impact those roles may have on downstream resources, services, or identities in the event of compromise. For help desk administrators specifically, ensure to scope privilege to exclude administrative operations over Global Administrators. Consider implementing segregation strategies such as Microsoft Entra ID Administrative Units to segment administrative access over the tenant. For identities that leverage cross-service roles such as those that service the Microsoft Security Stack, consider implementing additional service-based granular access control to restrict the use of sensitive functionality, like Live Response and modification of IOC allow lists.

Segment Azure landing zones

For organizations yet to begin or are early in their modernization journey, end-to-end guidance for cloud adoption is available through the Microsoft Azure Cloud Adoption Framework. Recommended practice and security are central pillars—Azure workloads are segregated into separate, tightly restricted areas known as landing zones. When deploying Active Directory in the cloud, it is advised to create a platform landing zone for identity—a dedicated subscription to hold all Identity-related resources such as Domain Controller VM resources. Employ least privilege across this landing zone with the aforementioned privilege and PIM guidance for Azure RBAC.

Implement Conditional Access policies and authentication methods

TTPs outlined in this blog leverage strategies to evade multifactor authentication defenses. However, it is still strongly recommended to practice basic security hygiene by implementing a baseline set of Conditional Access policies:

  • Require multifactor authentication for all privileged roles with the use of authentication strengths to enforce phish-resistant MFA methods such as FIDO2 security keys
  • Require phishing-resistant multifactor authentication for administrators
  • Enforce MFA registration from trusted locations from a device that also meets organizational requirements with Intune device compliance policies
  • User and sign-in risk policies for signals associated to Microsoft Entra ID Protection

Organizations are recommended to keep their policies as simple as possible. Implementing complex policies might inhibit the ability to respond to threats at a rapid pace or allow threat actors to leverage misconfigurations within the environment.

Develop and maintain a user education strategy

An organization’s ability to protect itself against cyberattacks is only as strong as its people—it is imperative to put in place an end-to-end cybersecurity strategy highlighting the importance of ongoing user education and awareness. Targeted education and periodic security awareness campaigns around common cyber threats and attack vectors such as phishing and social engineering not only for users that hold administrative privilege in the organization, but the wider user base is crucial. A well-maintained incident response plan should be developed and refined to enable organizations to respond to unexpected cybersecurity events and rapidly regain positive control.

Use out-of-band communication channels

Octo Tempest has been observed joining, recording, and transcribing calls using tools such as OtterAI, and sending messages via Slack, Zoom, and Microsoft Teams, taunting and threatening targets, organizations, defenders, and gaining insights into incident response operations/planning. Using out-of-band communication channels is strongly encouraged when dealing with this threat actor.

Detections

Microsoft 365 Defender

Microsoft 365 Defender is becoming Microsoft Defender XDR. Learn more.

NOTE: Several tools mentioned throughout this blog are remote administrator tools that have been utilized by Octo Tempest to maintain persistence. While these tools are abused by threat actors, they can have legitimate use cases by normal users, and are updated on a frequent basis. Microsoft recommends monitoring their use within the environment, and when they are identified, defenders take the necessary steps for deconfliction to verify their use.

Microsoft Defender Antivirus

Microsoft Defender Antivirus detects this threat as the following malware:

Turning on tamper protection, which is part of built-in protection, prevents attackers from stopping security services.

Microsoft Defender for Endpoint

The following Microsoft Defender for Endpoint alerts can indicate associated threat activity:

  • Octo Tempest activity group

The following alerts might also indicate threat activity related to this threat. Note, however, that these alerts can also be triggered by unrelated threat activity.

  • Suspicious usage of remote management software
  • Mimikatz credential theft tool
  • BlackCat ransomware
  • Activity linked to BlackCat ransomware
  • Tampering activity typical to ransomware attacks
  • Possible hands-on-keyboard pre-ransom activity

Microsoft Defender for Cloud Apps

Using Microsoft Defender for Cloud Apps connectors, Microsoft 365 Defender raises AitM-related alerts in multiple scenarios. For Microsoft Entra ID customers using Microsoft Edge, attempts by attackers to replay session cookies to access cloud applications are detected by Microsoft 365 Defender through Defender for Cloud Apps connectors for Microsoft Office 365 and Azure. In such scenarios, Microsoft 365 Defender raises the following alerts:

  • Backdoor creation using AADInternals tool
  • Suspicious domain added to Microsoft Entra ID
  • Suspicious domain trust modification following risky sign-in
  • User compromised via a known AitM phishing kit
  • User compromised in AiTM phishing attack
  • Suspicious email deletion activity

Similarly, the connector for Okta raises the following alerts:

  • Suspicious Okta account enumeration
  • Possible AiTM phishing attempt in Okta

Microsoft Defender for Identity

Microsoft Defender for Identity raises the following alerts for TTPs used by Octo Tempest such as NTDS stealing and Active Directory reconnaissance:

  • Account enumeration reconnaissance
  • Network-mapping reconnaissance (DNS)
  • User and IP address reconnaissance (SMB)
  • User and Group membership reconnaissance (SAMR)
  • Suspected DCSync attack (replication of directory services)
  • Suspected AD FS DKM key read
  • Data exfiltration over SMB

Microsoft Defender for Cloud

The following Microsoft Defender for Cloud alerts relate to TTPs used by Octo Tempest. Note, however, that these alerts can also be triggered by unrelated threat activity.

  • MicroBurst exploitation toolkit used to enumerate resources in your subscriptions
  • MicroBurst exploitation toolkit used to execute code on your virtual machine
  • MicroBurst exploitation toolkit used to extract keys from your Azure key vaults
  • MicroBurst exploitation toolkit used to extract keys to your storage accounts
  • Suspicious Azure role assignment detected
  • Suspicious elevate access operation (Preview)
  • Suspicious invocation of a high-risk ‘Initial Access’ operation detected (Preview)
  • Suspicious invocation of a high-risk ‘Credential Access’ operation detected (Preview)
  • Suspicious invocation of a high-risk ‘Data Collection’ operation detected (Preview)
  • Suspicious invocation of a high-risk ‘Execution’ operation detected (Preview)
  • Suspicious invocation of a high-risk ‘Impact’ operation detected (Preview)
  • Suspicious invocation of a high-risk ‘Lateral Movement’ operation detected (Preview)
  • Unusual user password reset in your virtual machine
  • Suspicious usage of VMAccess extension was detected on your virtual machines (Preview)
  • Suspicious usage of multiple monitoring or data collection extensions was detected on your virtual machines (Preview)
  • Run Command with a suspicious script was detected on your virtual machine (Preview)
  • Suspicious Run Command usage was detected on your virtual machine (Preview)
  • Suspicious unauthorized Run Command usage was detected on your virtual machine (Preview)

Microsoft Sentinel

Microsoft Sentinel customers can use the following Microsoft Sentinel Analytics template to identify potential AitM phishing attempts:

  • Possible AitM Phishing Attempt Against Azure AD

This detection uses signals from Microsoft Entra ID Identity Protection and looks for successful sign-ins that have been flagged as high risk. It combines this with data from web proxy services, such as ZScaler, to identify where users might have connected to the source of those sign-ins immediately prior. This can indicate a user interacting with an AitM phishing site and having their session hijacked. This detection uses the Advanced Security Information Model (ASIM) Web Session schema. Refer to this article for more details on the schema and its requirements. 

Threat intelligence reports

Microsoft customers can use the following reports in Microsoft products to get the most up-to-date information about the threat actor, malicious activity, and techniques discussed in this blog. These reports provide the intelligence, protection info, and recommended actions to prevent, mitigate, or respond to associated threats found in customer environments.

Microsoft Defender Threat Intelligence

Microsoft 365 Defender Threat analytics  

Hunting queries

Microsoft Sentinel

Microsoft Sentinel customers can use the TI Mapping analytics (a series of analytics all prefixed with ‘TI map’) to automatically match the malicious domain indicators mentioned in this blog post with data in their workspace. If the TI Map analytics are not currently deployed, customers can install the Threat Intelligence solution from the Microsoft Sentinel Content Hub to have the analytics rule deployed in their Sentinel workspace.

Microsoft Sentinel also has a range of detection and threat hunting content that customers can use to detect the post exploitation activity detailed in this blog in addition to Microsoft 365 Defender detections list above.

Further reading

Listen to Microsoft experts discuss Octo Tempest TTPs and activities on The Microsoft Threat Intelligence Podcast.

Visit this page for more blogs from Microsoft Incident Response.

For more security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on X (formerly Twitter) at https://twitter.com/MsftSecIntel.

November 1, 2023 update: Updated the Actions of objectives section to fix the list of anonymous file-hosting services used by Octo Tempest for data exfiltration, which incorrectly listed Sh.Azl. It has been corrected to shz.al.

The post Octo Tempest crosses boundaries to facilitate extortion, encryption, and destruction appeared first on Microsoft Security Blog.

]]>
Peach Sandstorm password spray campaigns enable intelligence collection at high-value targets http://approjects.co.za/?big=en-us/security/blog/2023/09/14/peach-sandstorm-password-spray-campaigns-enable-intelligence-collection-at-high-value-targets/ Thu, 14 Sep 2023 16:30:00 +0000 Since February 2023, Microsoft has observed a high volume of password spray attacks attributed to Peach Sandstorm, an Iranian nation-state group. In a small number of cases, Peach Sandstorm successfully authenticated to an account and used a combination of publicly available and custom tools for persistence, lateral movement, and exfiltration.

The post Peach Sandstorm password spray campaigns enable intelligence collection at high-value targets appeared first on Microsoft Security Blog.

]]>
Since February 2023, Microsoft has observed password spray activity against thousands of organizations carried out by an actor we track as Peach Sandstorm (HOLMIUM). Peach Sandstorm is an Iranian nation-state threat actor who has recently pursued organizations in the satellite, defense, and pharmaceutical sectors around the globe. Based upon the profile of victim organizations targeted and the observed follow-on intrusion activity, Microsoft assesses that this initial access campaign is likely used to facilitate intelligence collection in support of Iranian state interests.

In cases where Peach Sandstorm successfully authenticated to an account, Microsoft observed the group using a combination of publicly available and custom tools for discovery, persistence, and lateral movement. In a small number of intrusions, Peach Sandstorm was observed exfiltrating data from the compromised environment.

Given the volume of activity, ongoing attempts to access targets of interest, and risks associated with post-compromise activity, Microsoft is reporting on this campaign to raise awareness of recent Peach Sandstorm tradecraft and empower organizations to harden their attack surfaces and defend against this activity. As with any observed nation state actor activity, Microsoft directly notifies customers that have been targeted or compromised by Peach Sandstorm and provides them with the information they need to secure their accounts.

Who is Peach Sandstorm?

Peach Sandstorm is an Iranian nation-state group known to target organizations in multiple countries. In past attacks, Peach Sandstorm has pursued targets in the aviation, construction, defense, education, energy, financial services, healthcare, government, satellite, and telecommunications sectors. Activity that Microsoft attributes to Peach Sandstorm overlaps with public reporting on groups known as APT33, Elfin, and Refined Kitten.

Throughout 2023, Peach Sandstorm has consistently demonstrated interest in organizations in the satellite, defense, and to a lesser extent, pharmaceutical sectors.  In the initial phase of this campaign, Peach Sandstorm conducted password spray campaigns against thousands of organizations across several sectors and geographies. While Microsoft observed several organizations previously targeted by Peach Sandstorm, the volume of activity and range of organizations suggests that at least a subset of the initial activity is opportunistic.

In past operations, Peach Sandstorm relied heavily, but not exclusively, on password spray attacks as a means of gaining access to targets of interest. In some cases, Peach Sandstorm has used this tradecraft to compromise an intermediate target and enable access to downstream environments. As one example, Peach Sandstorm carried out a wave of attacks in 2019 that coincided with a rise in tensions between the United States and the Islamic Republic of Iran.

Unlike password spray operations which are noisy by definition, a subset of Peach Sandstorm’s 2023 post-compromise activity has been stealthy and sophisticated. Many of the cloud-based tactics, techniques, and procedures (TTPs) seen in these most recent campaigns are materially more sophisticated than capabilities used by Peach Sandstorm in the past.

Intrusion chain

Microsoft observed Peach Sandstorm using two distinct sets of TTPs in the early stages of the intrusion lifecycle in 2023 attacks. In later stages of known compromises, the threat actor used different combinations from a set of known TTPs to drop additional tools, move laterally, and ultimately exfiltrate data from a target.

Peach Sandstorm 2023 tradecraft and attack flow diagram.
Figure 1. Peach Sandstorm 2023 tradecraft

Path 1: Password spray activity, internal reconnaissance with AzureHound or Roadtools, and multiple persistence mechanisms

Password spray activity

Between February and July 2023, Peach Sandstorm carried out a wave of password spray attacks attempting to authenticate to thousands of environments. Password spraying is a technique where threat actors attempt to authenticate to many different accounts using a single password or a list of commonly-used passwords. Unlike brute force attacks that target a single account using many passwords, password spray attacks help adversaries maximize their chances for success and minimize the likelihood of automatic account lockouts.

Even a single compromised account could allow an adversary to conduct reconnaissance, move laterally, or access sensitive resources, often without attracting attention from defenders.

Identity attack lifecycle stages starting counterclockwise from the top: Identity compromise, platform for new attacks, reconnaissance, and resource access, back to identity compromise.
Figure 2. Identity attack lifecycle

Long-running password spray campaigns offer insight into adversaries’ pattern of life. Activity observed in this campaign aligned with an Iranian pattern of life, particularly in late May and June, where activity occurred almost exclusively between 9:00 AM and 5:00 PM Iran Standard Time (IRST). While Peach Sandstorm has carried out high-volume password spray campaigns in the past, elements of the most recent campaign were unique. Specifically, Peach Sandstorm consistently conducted the password sprays from TOR IPs and used a “go-http-client” user agent.

Bar graph displaying Peach Sandstorm authentication attempts by hour between April and July 2023.
Figure 3. Peach Sandstorm authentication attempts by hour (April-July 2023)
Bar graph displaying Peach Sandstorm authentication attempts by the day of the week between April and July 2023.
Figure 4. Peach Sandstorm authentication attempts by day of the week (April-July 2023)

Internal reconnaissance with AzureHound or Roadtools

In a small subset of instances where Peach Sandstorm successfully authenticated to an account in a targeted environment, Microsoft observed the threat actor using AzureHound or Roadtools to conduct reconnaissance in Microsoft Entra ID (formerly Azure Active Directory). In this campaign, Peach Sandstorm used AzureHound, a Go binary that collects data from Microsoft Entra ID and Azure Resource Manager through the Microsoft Graph and Azure REST APIs, as a means of gathering information on a system of interest. Similarly, Roadtools, a framework to access Microsoft Entra ID, allowed Peach Sandstorm to access data in a target’s cloud environment and conveniently dump data of interest to a single database.

AzureHound and Roadtools have functionality that is used by defenders, red teams, and adversaries. The same features that make these tools useful to legitimate users, like pre-built capabilities to explore and seamlessly dump data in a single database, also make these tools attractive options for adversaries seeking information about or from a target’s environment.

Multiple persistence mechanisms

In cases where Microsoft observed this particular intrusion chain, the threat actor used one or more persistence mechanisms. In some cases, Peach Sandstorm created a new Azure subscription on a target’s tenant and/or leveraged previously compromised Azure resources. These subscriptions were subsequently used to facilitate communication with Peach Sandstorm’s infrastructure.

Peach Sandstorm also abused Azure Arc, a capability that allows users to secure, develop, and operate infrastructure, applications, and Azure services anywhere, to persist in compromised environments. In this campaign, Peach Sandstorm installed the Azure Arc client on a device in the compromised environment and connected it to an Azure subscription controlled by Peach Sandstorm. This effectively allowed Peach Sandstorm to control devices in a target’s on-premises environment from Peach Sandstorm’s cloud.

Path 2: Remote exploitation of vulnerable internet-facing applications

Initial access using remote exploitation

In this wave of activity, Peach Sandstorm also attempted to exploit vulnerabilities with a public proof-of-concept (POC) in Zoho ManageEngine or Confluence, to access targets’ environments.

Post-compromise activity

The following post-compromise activity affected organizations in the defense, satellite, and pharmaceutical sectors:

  • In a subset of intrusions in this campaign, Peach Sandstorm deployed AnyDesk, a commercial remote monitoring and management tool (RMM) to maintain access to a target. AnyDesk has a range of capabilities that allow users to remotely access a network, persist in a compromised environment, and enable command and control (C2). The convenience and utility of a tool like AnyDesk is amplified by the fact that it might be permitted by application controls in environments where it is used legitimately by IT support personnel or system administrators.
  • In a March 2023 intrusion, Peach Sandstorm conducted a Golden SAML attack to access a target’s cloud resources. In a Golden SAML attack, an adversary steals private keys from a target’s on-premises Active Directory Federated Services (AD FS) server and use the stolen keys to mint a SAML token trusted by a target’s Microsoft 365 environment. If successful, a threat actor could bypass AD FS authentication and access federated services as any user.
  • In at least one intrusion, Microsoft observed Peach Sandstorm using a legitimate VMWare executable to carry out a search order hijack. DLL search order hijacking allows adversaries to introduce malicious code into an environment in a way that blends in with normal activity.
  • In a handful of environments, Microsoft observed Peach Sandstorm using EagleRelay to tunnel traffic back to their infrastructure. In these instances, Peach Sandstorm created a new virtual machine in a compromised Azure subscription. These virtual machines were used to run EagleRelay, a custom tool, to tunnel traffic between actor-controlled systems and targets’ systems. In at least one case, Microsoft also saw Peach Sandstorm attempting to move laterally in a compromised environment using remote desktop protocol (RDP).

Additional context

The capabilities observed in this campaign are concerning as Microsoft saw Peach Sandstorm use legitimate credentials (gleaned from password spray attacks) to authenticate to targets’ systems, persist in targets’ environments, and deploy a range of tools to carry out additional activity. Peach Sandstorm also created new Azure subscriptions and leveraged the access these subscriptions provided to conduct additional attacks in other organizations’ environments. While the specific effects in this campaign vary based on the threat actor’s decisions, even initial access could adversely impact the confidentiality of a given environment. Microsoft continues to work across its platforms to identify abuse, take down malicious activity, and implement new proactive protections to discourage malicious actors from using our services. We encourage customers and the industry to report abuse.

As Peach Sandstorm increasingly develops and uses new capabilities, organizations must develop corresponding defenses to harden their attack surfaces and raise costs for these attacks. Microsoft will continue to monitor Peach Sandstorm activity and implement robust protections for our customers.

Mitigations

To harden an attack surface against Peach Sandstorm activity, defenders can implement the following:

  • Reset account passwords for any accounts targeted during a password spray attack. If a targeted account had system-level permissions, further investigation may be warranted.
  • Revoke session cookies in addition to resetting passwords
    • Revoke any multifactor authentication (MFA) setting changes made by the attacker on any compromised users’ accounts
    • Require re-challenging MFA for MFA updates as the default

Securing critical assets like AD FS servers is a high-value measure to protect against golden SAML attacks. The guidance provided below is applicable beyond just Peach Sandstorm activity and can help organizations harden their attack surfaces against a range of threats.

  • It’s critical to treat your AD FS servers as a Tier 0 asset, protecting them with the same protections you would apply to a domain controller or other critical security infrastructure. AD FS servers provide authentication to configured relying parties, so an attacker who gains administrative access to an AD FS server can achieve total control of authentication to configured relying parties (include Microsoft Entra ID tenants configured to use the AD FS server).
  • Practicing credential hygiene, notably the recommendations provided above, is critical for protecting and preventing the exposure of highly privileged administrator accounts. This especially applies on more easily compromised systems like workstations with controls like logon restrictions and preventing lateral movement to these systems with controls like the Windows Firewall.
  • Migration to Microsoft Entra ID (formerly Azure Active Directory) authentication is recommended to reduce the risk of on-premises compromises moving laterally to your authentication servers. Customers can use the following references on migration:

Indicators of compromise

IndicatorTypeDescription
192.52.166[.]76IP addressPeach Sandstorm adversary IP
108.62.118[.]240IP addressPeach Sandstorm adversary IP
102.129.215[.]40 IP addressPeach Sandstorm adversary IP
76.8.60[.]64IP addressPeach Sandstorm adversary IP

Detection details

Microsoft Defender for Endpoint

Alerts with the following titles in the security center can indicate Peach Sandstorm activity on your network:

  • Peach Sandstorm actor activity detected

Microsoft Defender for Identity

The following alerts might indicate activity associated with password spray campaigns.

  • Password Spray
  • Atypical travel
  • Unfamiliar Sign-in properties

Microsoft Defender for Cloud Apps

The following alerts might indicate activity associated with password spray campaigns.

  • Activity from a Tor IP address
  • Suspicious Administrative Activity
  • Impossible travel activity
  • Multiple failed login attempts
  • Activity from a password-spray associated IP address

Organizations with Defender for Cloud Apps can turn on app governance, a set of security and policy management capabilities designed for OAuth-enabled apps registered on Azure Active Directory, Google, and Salesforce. The following detections in App governance might indicate activity associated with password spray campaigns.

  • Numerous Azure AD enumeration calls using PowerShell
  • Suspicious enumeration activities performed using AAD PowerShell

Hunting queries

Microsoft Sentinel

Microsoft customers can use a range of Microsoft Sentinel content to help detect Peach Sandstorm activity described in this blog. The Azure Active Directory solution contains several analytics rules and hunting queries for Microsoft Entra ID data that can help uncover initial access activity including password sprays. Specific analytics rules of value include:

References

Further reading

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on Twitter at https://twitter.com/MsftSecIntel.

The post Peach Sandstorm password spray campaigns enable intelligence collection at high-value targets appeared first on Microsoft Security Blog.

]]>
Cryptojacking: Understanding and defending against cloud compute resource abuse http://approjects.co.za/?big=en-us/security/blog/2023/07/25/cryptojacking-understanding-and-defending-against-cloud-compute-resource-abuse/ Tue, 25 Jul 2023 17:00:00 +0000 Cloud cryptojacking, a type of cyberattack that uses computing power to mine cryptocurrency, could result in financial loss to targeted organizations due to the compute fees that can be incurred from the abuse.

The post Cryptojacking: Understanding and defending against cloud compute resource abuse appeared first on Microsoft Security Blog.

]]>
In cloud environments, cryptojacking – a type of cyberattack that uses computing power to mine cryptocurrency – takes the form of cloud compute resource abuse, which involves a threat actor compromising legitimate tenants. Cloud compute resource abuse could result in financial loss to targeted organizations due to the compute fees that can be incurred from the abuse. In attacks observed by Microsoft, targeted organizations incurred more than $300,000 in compute fees due to cryptojacking attacks.

While there are fundamental differences in how cloud providers handle authentication, permissions, and resource creation, a cloud cryptojacking attack could unfold in any environment where a threat actor can compromise an identity and create compute, and the attack lifecycle is largely the same. Microsoft security experts have surfaced tell-tale deployment patterns to help defenders determine, identify, and mitigate cloud cryptojacking attacks.

To perform cloud cryptojacking, threat actors must typically have access to compromised credentials obtained through various means, highlighting the need to implement common best practices like credential hygiene and cloud hardening. If the credentials do not have the threat actors’ desired permissions, privilege escalation techniques are used to obtain additional permissions. In some cases, threat actors hijack existing subscriptions to further obfuscate their operations.

Once access to the tenant is gained, threat actors create large amounts of compute, preferring core types that allow them to mine more currency faster. Threat actors use these deployed resources to start mining cryptocurrency by installing cryptomining software in the newly created virtual machines (VMs) and joining them to mining pools.

In this blog post, we present insights from our research on how attackers launch cryptojacking attacks in cloud environments. These insights deepen our understanding of these threats, which in turn inform the protections that we continuously build into our cloud security solutions. We share patterns that administrators and defenders can look out for to identify if a cryptojacking attack is occurring within their cloud environment. We also provide information on how Microsoft Defender for Cloud, Microsoft Defender for Cloud Apps, and other solutions can detect cryptocurrency mining threats and related malicious activity.

While this blog covers mitigation and protections against cloud cryptojacking, in general, strengthening cloud security posture, protecting cloud workloads from threats, and better control of cloud app access can help organizations defend against a wide range of cloud-based threats and risks.

Cryptocurrency mining in cloud environments

In incident response investigations and proactive research in the past year, we observed threat actors abusing administrative features to deploy and manage cryptocurrency mining resources in compromised tenants. Many of these attacks take advantage of automation, which increases the potential threat to cloud environments.

Cryptocurrency mining using central processing unit (CPU) or graphics processing unit (GPU) compute in cloud environments is not financially viable if one is paying for the compute used. In order to profit, threat actors use malicious methods to avoid paying for the resources, such as abusing free trials or compromising legitimate tenants to conduct cryptojacking attacks.

Unlike free trial abuse, which the cloud provider may be able to detect, cryptojacking in compromised tenants is more challenging to identify since it involves the threat actor having access to a legitimate user account. This complex method impacts the user more directly, as it allows the threat actor to make more intrusive changes in the target environment:

  • Utilize available compute quota from compromised tenants, and provision significantly more compute and other additional resources.
  • Mask resource provisioning activity as legitimate when operating within a compromised tenant.
  • Use access to the compromised tenant to do further lateral movement, achieve persistence, and conduct information theft.

Successful cloud cryptojacking attacks could result in significant unexpected charges to the compromised tenant and depletion of resources that the tenant might need for business continuity, potentially resulting in service interruption, highlighting the need to prevent, detect and mitigate cloud cryptojacking attacks.

Attack lifecycle

Cryptojacking requires the threat actor to reach a certain level of access to the cloud environment, which we explain in more detail in the next sections. The diagram below shows the stages of a typical cloud cryptojacking attack.

Graphical diagram of a cryptojacking attack lifecycle. Presents the steps taken by threat actor from accessing the tenant to mining cryptocurrency.
Figure 1. Diagram of cryptojacking attack on a compromised cloud tenant

In the above example, the attacker generally keeps their operational infrastructure separate from the compromised infrastructure used for mining.

Initial access: Compromised credentials

To perform this attack, the threat actor must have access to credentials that can be used to access the tenant. These credentials need to have the virtual machine contributor role, or provide a path to a user account that does. Threat actors abusing tenants in this way utilize multiple methods to gain account credentials such as phishing, using leaked credentials, and on-premises device compromise. Microsoft Incident Response investigations found that in nearly all cases observed, the accounts did not have multi-factor authentication (MFA) enabled, and no evidence of password spray or brute force was present, suggesting leaked credentials might be the most common vector.

After gaining access, some threat actors use attacker-controlled virtual machines within legitimate tenants as their operational infrastructure. By using living-off-the-land techniques, threat actors can operate without any infrastructure external to the cloud environment. This attack cycle is shown in the diagram below.

Graphical diagram of the attack cycle where the threat actor gains access to target tenants.
Figure 2. Initial access attack cycle

In the above example, the attacker generally keeps their operational infrastructure separate from the compromised infrastructure used for mining.

Privilege escalation: Elevating access

In some observed cases, threat actors compromise the global administrator account. By design, global administrator accounts might not have access to all subscriptions and management groups within the directory; the elevate access option needs to be elevated for the account to have permissions over all resources. Access to global administrator accounts must therefore be adequately secured to prevent threat actors from elevating their access or granting roles that allow the creation of compute resources.

Defense evasion: Subscription hijacking

After gaining access to the tenant and performing reconnaissance to determine available permissions, the attacker may proceed to hijack the subscription. Subscription hijacking has been covered previously in the blog entry Hunt for compromised Azure subscriptions using Microsoft Defender for Cloud Apps.

Subscription hijacking is an evasion technique that allows the threat actor to hide some of their activities from the tenant administrator and security teams. Migrating a subscription directory requires the threat actor to have sufficient privileges in the target subscription. In cases observed by Microsoft, the destination tenant may be attacker-controlled or another affected tenant that the threat actor has access to.

Additionally, subscription hijacking is disruptive forensically. Microsoft Incident Response has observed instances where a threat actor compromised accounts in customer environments that were over-privileged. Abusing over-privileged accounts allowed the threat actor to migrate the subscription to a separate tenant (often attacker-controlled) to spin up additional resources. While activity logs at the subscription level remain with the subscription, anything recorded at the tenant role-based access control (RBAC) level is recorded in the new tenant, making forensic analysis, understanding the full timeline, or incident response by or for the customer, more challenging.

Impact: Increasing core quotas

Once a threat actor has access to a tenant, they can either create compute using existing core quota, or they may choose to increase core quotas within the tenant. Increasing core quotas is potentially risky for the actor as quota increases undergo review. Some quotas can’t be immediately adjusted and require a support ticket to increase.

Threat actors without permission to increase quotas use whatever is available. This often leads to them exhausting available core counts across multiple regions. Quota increases have occurred up to a month before resources are deployed by the threat actor.

GPU compute offerings are often targeted by threat actors. GPU compute provides access to high performance NVIDIA and AMD GPU cores, allowing cryptocurrency mining magnitudes more effective than any CPU compute offering. A complete overview of GPU compute types can be found in GPU optimized virtual machine sizes.

The NVIDIA T4, V100, and A100 GPU compute options are most abused by threat actors. At time of writing, the NVIDIA A100 is the best mining card available that is not a dedicated application-specific integrated circuit (ASIC). When comparing NVIDIA GPU performance for cryptomining, the number of Compute Unified Device Architecture (CUDA) cores can be used as a rough representation of the card’s performance. CUDA is designed specifically for high performance parallel computing, which allows more computations to take place at once. For NVIDIA GPUs, more CUDA cores generally means more mining potential. The table below shows the comparative hash rate for the top three most abused GPU compute cards within cloud environments based on mining Ethereum Proof of Work (ETHW).

Azure VM versionsGPUCUDA coresETHW*
NC T4 v3NVIDIA T42,56025.1MH/s
NCv3NVIDIA V1005,12089.5MH/s
ND A100 v4NVIDIA A100 (40GB)6,192175MH/s
* Mining rates based on the Ethereum Proof of Work complexity in February 2023

As the table above shows, threat actors who can provision NVIDIA GPU cores can mine a meaningful amount of currency in a relatively short period of time. In attacks observed by Microsoft, cryptojacking activities were seen to incur compute fees more than $300,000, illustrating how unprofitable mining is within cloud environments without committing resource theft.

Impact: Deploying compute

There are several ways to deploy compute, and threat actors have adapted to abusing features to speed up deployment. As resource hijacking is an attack of scale, the threat actor needs a way to rapidly spin up and manage multiple devices. In observed cases, threat actors have employed VM scale sets, Azure Machine Learning compute instances, Azure Batch, and Azure Container Instances. Each of these systems allows compute to be deployed quickly and centrally managed.

Malicious provisioning behavior of compute using the above methods generally does not match existing compute provisioning patterns within the tenant. The graph below shows an attacker deploying NVIDIA compute cores within a target environment using VM scale sets. The Y axis shows the capacity of the VM whilst the X axis represents time, this activity spans a three-hour period. Each color represents a single region, with the attacker iterating the various regions to create compute.

A line graph presenting threat actors' compute deployment pattern. The graph indicates that actors create identical numbers of batch accounts for multiple hijacked subscriptions.
Figure 3. Attacker compute deployment pattern

In the graph above, the actor followed a predictable and anomalous deployment pattern across several hijacked subscriptions. Microsoft Threat Intelligence analysis shows that this deployment pattern is unique to a specific threat actor. While this specific pattern may change, the automated nature of malicious compute deployments means that an unusual pattern almost always emerges.

Some staggering of deployment is used, but the threat actor ultimately needs to provision compute very quickly to make the attack profitable. This time restriction means that patterns in provisioning generally emerge over relatively short periods of time. In the above case, the entire provisioning stage of the attack took place over a three-hour period.

In addition to the pattern of deployment, in this case, the following additional anomalies were also observed:

  • The user accounts used to provision compute had never provisioned compute before.
  • The compromised user provisioned GPU compute, when no GPU compute had been provisioned in this environment before.
  • Compute was deployed to regions anomalous for the environment.

Other cases observed by Microsoft showed the following deployment anomalies:

  • A user with a recent Azure AD anomaly creating large volumes of compute.
  • A user suddenly causing multiple deployment failures spanning multiple core types due to a core quota unavailability.

Other than VM scale set deployment patterns, the same anomalous patterns can be identified within other automated deployment services such as Azure ML compute instances, Azure Batch, and Azure Container Instances.

Impact: Mining cryptocurrency

Once compute resources are deployed, the actor may need to install GPU drivers to take full advantage of the graphics card, especially on N-series VMs. Actors have been observed abusing Azure Virtual Machine extensions such as an NVIDIA GPU Driver Extension for Windows or Linux, or an AMD GPU Driver Extension for Windows, to facilitate driver installation. These extensions allow for the mass-deployment of drivers, reducing the threat actors’ setup time before mining.

The following anomalies have been observed when actors use these extensions:

  • Sudden or unusual high-volume provisioning of GPU drivers using a GPU Driver Extension.
  • A user account suddenly deploying GPU extensions, especially where that user account has no history of deploying VM extensions.

With compute prepared, the threat actor can begin mining cryptocurrency by deploying mining software to the newly created VMs. The installed mining software joins the VM to a mining pool, which allows the threat actor to pool their stolen processing power from multiple compromised tenants.

Data from Microsoft Defender for Cloud shows some of the most recent pools in use by threat actors using already-compromised Azure tenants. Below is the list of the top 10 mining domains observed being used:

  1. nanopool[.]org
  2. nicehash[.]com
  3. supportxmr[.]com
  4. hashvault[.]pro
  5. zpool[.]ca
  6. herominers[.]com
  7. f2pool[.]com
  8. minexmr[.]com
  9. moneroocean[.]stream
  10. miner[.]rocks

Seeing connections to any mining pool from a VM within an environment is a strong indication of compromise. Microsoft Defender for Cloud has multiple detections for this behavior.

Recommendations to identify and mitigate cryptojacking attacks

Security teams should monitor and regularly review alerts specific to these scenarios. In environments where the creation of compute or increases in quota are uncommon, additional alerts should be built to monitor associated operations within your SIEM tool like Microsoft Sentinel. These are highly environmentally specific.

While every situation is unique to the customer and their environment, Microsoft Incident Response has identified several recommendations that are broadly applicable to help identify and mitigate cryptojacking attacks, alongside specific product detections. These recommendations are based on observations from responding to multiple resource abuse engagements.

  • Separation of privileged roles: Keep administrator and normal user accounts separate. Non-administrator users who require privileged roles in the environment for specific functions should utilize Privileged Identity Management to access the roles on an as-needed basis in a way that can be audited and tracked, or also have separate accounts created. In most resource abuse cases Microsoft Incident Response has investigated, the initially compromised user is over privileged in some way. Thus, it is good practice to limit the number of accounts that have the virtual machine contributor role. In addition, accounts with this role should be protected by MFA and Conditional Access where possible. Also, since a global admin must enable the elevate access option to have permissions over all Azure resources, it should be considered a very sensitive activity that should be monitored and reviewed.
  • Multifactor authentication: Tenant administrators should ensure that MFA is in use comprehensively across all accounts. This is especially important if the account has virtual machine contributor privileges. Users should also be discouraged from reusing passwords across services. Microsoft Defender for Cloud provides a range of recommendations to secure cloud environments. A full list can be found in Security recommendations – a reference guide.
  • Risk-based sign-in behaviors and conditional access policies: In cases investigated, attackers who have signed in using compromised credentials have triggered high Azure Active Directory (Azure AD) risk scores. Monitoring risky user alerts and tuning detections that take advantage of this security information help prevent these attacks. In addition to analyzing Azure AD risk scores, correlating risky Azure AD behavior with follow-on activity can help produce additional true positive detections. Risk-based conditional access policies can be designed to require multifactor reauthentication, enforce device compliance, force the user to update their password, or outright block the authentication. In many cases, policies such as these can be disruptive enough to provide security teams with enough time and signal to respond or alert the legitimate user to an issue before the resource abuse begins.
    Standard login anomaly detections were also found applicable in cases investigated by Microsoft Incident Response, with threat actors commonly using proxy services, signing in from anomalous locations, and accessing accounts using anomalous user agents. One group of activity tracked by Microsoft Threat Intelligence used Python requests and the default user agent (python-requests/2.26.0) for all operations.
    Microsoft 365 Defender uses detections such as Access elevation by risky user and Risky user performed suspicious Azure activities, which correlate users marked as risky by Azure AD with anomalous actions to raise the severity of alerts in Microsoft 365 Defender.
    Lastly, authentication to a tenant from an IP that is outside of that tenant should be  anomalous. Defenders can identify which IP addresses are allocated within a tenant using the az vm list-ip-addresses command.
  • Limit unused quota and monitor for unexpected quota increases: Looking for multiple unexpected quota increases occurring in a short period of time, quota increases across multiple regions, or quota increases within regions that the environment does not normally use might allow for early detection of a resource abuse attack. Quota increases are one of the first signals Microsoft Incident Response looks for when investigating suspected resource abuse attack. Quota increase detections can potentially be refined by looking for increases to commonly abused core types, especially if their usage is otherwise rare in an environment.
  • Monitor for external Azure IP addresses authenticated with your tenant: Threat actors performing these attacks also use Azure compute resources to conduct their operations. Monitoring for successful sign in activity from Azure IP addresses that are not owned by your tenant is often a strong indicator of suspicious activity. Seeing multiple authentication attempts from Azure IP addresses using the same browser user agent is another strong indicator of potential password guessing.

Detection details

Microsoft 365 Defender

Microsoft 365 Defender is becoming Microsoft Defender XDR. Learn more.

Microsoft 365 Defender uses its cross-workloads detection capabilities to provide enhanced protection against cryptocurrency mining attacks. Microsoft 365 Defender customers who have enabled their Azure connector in Microsoft Defender for Cloud Applications can benefit from the following alerts:

  • Access elevation by risky user
  • Suspicious Azure activities related to possible cryptocurrency mining
  • Mass provisioning of GPU virtual machines for possible cryptocurrency mining
  • Suspicious creation of multiple Azure ML clusters and workspaces
  • Suspicious role assignment in Azure subscription
  • VM quota modified after risky user signed in

Microsoft Defender for Cloud Applications

The following Microsoft Defender for Cloud Application alerts indicate threat activity related to the attack discussed in this post:

  • Multiple delete VM activities
  • Multiple VM creation activities

Microsoft Defender for Cloud

Microsoft Defender for Cloud detects threat components associated with the activities outlined in this article with the following alerts:

  • Azure Resource Manager operation from suspicious proxy IP address
  • Crypto-mining activity
  • Digital currency mining activity (Preview)
  • Fileless attack toolkit detected 
  • Possible Cryptocoinminer download detected 
  • Process associated with digital currency mining detected 
  • Potential crypto coin miner started 
  • Suspicious Azure role assignment detected (Preview)
  • Suspicious creation of compute resources detected (Preview)
  • Suspicious installation of a GPU extension was detected in your virtual machine (Preview)
  • Suspicious invocation of a high-risk ‘Execution’ operation by a service principal detected (Preview)
  • Suspicious invocation of a high-risk ‘Execution’ operation detected (Preview)
  • Suspicious invocation of a high-risk ‘Impact’ operation by a service principal detected (Preview)
  • Suspicious invocation of a high-risk ‘Impact’ operation detected (Preview)
  • Suspicious subscription transfer to external tenant was detected (Preview)

Microsoft Defender for Endpoint

The following Microsoft Defender for Endpoint alert can indicate associated threat activity:

  • Possible cryptocurrency miner

Hunting queries

Microsoft Sentinel

Microsoft Sentinel customers can use the TI Mapping analytics (a series of analytics all prefixed with ‘TI map’) to automatically match the malicious domain indicators mentioned in this blog post with data in their workspace. If the TI Map analytics are not currently deployed, customers can install the Threat Intelligence solution from the Microsoft Sentinel Content Hub to have the analytics rule deployed in their Sentinel workspace. More details on the Content Hub can be found here:

In addition, Microsoft Sentinel customers can leverage the following content to hunt for and detect related activity in their environments:

Appendix

Top 10 mining domains used by threat actors:

  1. nanopool[.]org
  2. nicehash[.]com
  3. supportxmr[.]com
  4. hashvault[.]pro
  5. zpool[.]ca
  6. herominers[.]com
  7. f2pool[.]com
  8. minexmr[.]com
  9. moneroocean[.]stream
  10. miner[.]rocks

Further reading

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on Twitter at https://twitter.com/MsftSecIntel.

The post Cryptojacking: Understanding and defending against cloud compute resource abuse appeared first on Microsoft Security Blog.

]]>
Microsoft Inspire: Partner resources to prepare for the future of security with AI http://approjects.co.za/?big=en-us/security/blog/2023/07/18/microsoft-inspire-partner-resources-to-prepare-for-the-future-of-security-with-ai/ Tue, 18 Jul 2023 15:30:00 +0000 Microsoft Inspire is an incredible opportunity to share all the ways AI can support security efforts with our partner ecosystem. Register to hear strategies to prepare your organization for AI with comprehensive security and security posture.

The post Microsoft Inspire: Partner resources to prepare for the future of security with AI appeared first on Microsoft Security Blog.

]]>
Cybersecurity is one of the most pressing challenges of our time. With an ever-changing threat landscape and siloed data across multiple security point solutions, defenders have limited visibility. It’s difficult to stay current and find cybersecurity professionals amid the global talent shortage.

Attacks are quickly becoming more automated through AI-assisted tools. They are also increasing exponentially—the number of password attacks Microsoft detects has more than tripled in the last 12 months, from 1,287 per second to more than 4,000 per second.1 Plus, the annual cost of cyberattacks continues to grow. According to the FBI Internet Crime Complaint Center’s (IC3) latest research, reported total losses grew from USD6.9 billion in 2021 to more than USD10.2 billion in 2022.2 Such losses are even greater on a global scale. If organizations continue to operate within a fractured security state and only utilize what’s worked in the past, they will leave gaps in their security posture.

Now there is a unique opportunity to harness the power of AI in combination with an end-to-end security solution to build a resilient security posture with defenses that rapidly adapt. There has never been a more important time for specialized cybersecurity expertise, and our partners are critical to preparing customers for the era of AI. According to a Forrester Total Economic Impact study, Microsoft Security partners are realizing a significant increase in their business with more than 14 percent year-over-year growth.3 In small and medium businesses (SMBs), partners are seeing even more dramatic demand with more than 37 percent market expansion just this last year.

Today at Microsoft Inspire 2023, we will discuss AI-powered security during the “Springboard customers into the era of AI with end-to-end security” session. Also, you’ll have an opportunity to ask your most pressing questions at the expert Q&A.

Register for Microsoft Inspire to hear more details on our latest exciting announcements listed in this blog.

Microsoft Inspire 2023

Elevate your business by joining us for Microsoft Inspire, July 18 and 19, 2023, and learn how to accelerate AI transformation in your security practice.

Coming soon: Microsoft Security Copilot Early Access Program

We are extremely encouraged by the excitement and positive feedback we have received from customers and partners since we announced Microsoft Security Copilot—one of the first generative AI products in the security industry—in March 2023. This fall, we will open our Early Access Program and invite more customers and partners to experience Security Copilot. To help us focus our learning, customers who use Microsoft Defender for Endpoint will be prioritized for early access. Those who also use Microsoft Sentinel will get even more benefit from the program. Security Copilot is designed to work with a broad range of Microsoft and third-party tools, and we will expand the program as we learn.

Our preview is well underway, and the feedback from our preview customers shows that there’s every reason to be excited about the massive potential of this technology to help protect at machine speed and scale:

“Microsoft is spearheading a transformative shift in security operations center (SOC) processes and operations at a truly remarkable speed. By fully integrating these cutting-edge AI technologies, they are pioneering a leap so momentous that by December 2024, SOC operations from 2021 may seem prehistoric in comparison. The surge in productivity could be unparalleled. At Bridgewater, we are thrilled to be helping Microsoft on this voyage, collaboratively propelling Security Copilot’s full potential to the forefront of the industry.”

—Igor Tsyganskiy, President, Bridgewater

New: Security Copilot design advisory council

Today, we are officially kicking off our partner engagement to help you build your own solutions and services powered by Security Copilot. If you are a Microsoft partner, you can start today by helping customers deploy Microsoft Defender for Endpoint and Microsoft Sentinel so that they are prepared to adopt Microsoft Security Copilot. We are excited to join forces with our partners, including members of the Microsoft Intelligent Security Association. Here’s what a couple of our partners have shared already:

“When it comes to cybersecurity, threat actors are increasingly using AI to carry out sophisticated attacks, so why aren’t defenders? We are operating in an era where fighting AI with AI is non-negotiable. By partnering with Microsoft Security Copilot, we can help level the playing field for defenders together. Much of the AI universe sits behind Cloudflare, and acting as the intermediary to allow businesses to harness the power of this technology in a safe way is critical.”

—Matthew Prince, Chief Executive Officer, Cloudflare

“We believe that generative AI will be truly revolutionary and will allow us to become more effective and efficient, by orders of magnitude, in protecting our customers. We expect to see productivity increases from our SOC analysts using Security Copilot when dealing with scenarios like incident response and threat hunting and believe there is potential for upskilling effects, allowing any analyst to complete more advanced tasks quicker than ever before. We are proud to be on this journey with Microsoft and remain excited as they continue to add more compelling capabilities to Security Copilot.”

—Brian Beyer, Chief Executive Officer, Red Canary

“Building on our recent investment to expand and scale our AI offerings, we’re excited to team with Microsoft on bringing Security Copilot to our joint customers, augmenting their ability to predict—prevent—and rapidly respond to security threats. This will help empower all of our customers and provide new opportunities leveraging the responsible use of generative AI.”

—Sean Joyce, Global Cybersecurity and Privacy Leader, PwC

If you are interested in learning how to engage with your customers now to take full advantage of these new AI technologies, we invite you to sign up to receive communications and to be considered for our new Security Copilot design advisory council.

Investments in the managed security service provider community

According to Gartner®, “by 2025, 60 percent of organizations will be actively using remote threat disruption and containment capabilities delivered directly by MDR providers, up from 30 percent today.”4 

To help meet the anticipated demand for these services, we are actively working to recruit more Managed Extended Detection and Response (MXDR) partners alongside our first-party offering. Microsoft is deeply committed to our partner community, and partners will always be the primary path for customers to get the services they need. We are increasing our overall investments for security partners by nearly 50 percent this coming year. A great example of this continued investment is the Microsoft engineering verified MXDR solution status that we launched for partners last year.

Making it easier to better protect small and medium businesses

Small and medium businesses are seeing more cyberattacks, with 82 percent of ransomware attacks targeting small businesses.5 Due to a lack of internal security specialists, these businesses often look to IT partners to help secure their IT environments.

We are making it easier for partners to deliver security services to their customers:

  • For partners who want to build their own SOC or managed detection and response (MDR) service, we are pleased to announce streaming APIs from Microsoft Defender for Business to enable advanced hunting and attack detection. Available in preview in Defender for Business standalone and as part of Microsoft 365 Business Premium.
  • With a 3.4 million-person global shortage in the cyber workforce, partners face staffing challenges as much as their customers do.6 For those partners who want to resell security services but do not have the resources to invest in an in-house SOC, we are pleased to announce integrations with leading MDR providers. For example, Blackpoint Cyber now offers both a round-the-clock cloud response MDR service for Microsoft 365 environments, including Microsoft 365 Business Premium, and a managed endpoint detection and response (EDR) service for Defender for Business customers. 
  • We’re extending mobile protection to SMB customers who may not have a mobile device management solution with Mobile threat defense for standalone Defender for Business customers—now generally available. The new Defender for Business monthly summary report will show threats prevented, current status from Microsoft Secure Score and recommendations, and will help partners to show value to customers.

For details on our SMB-focused announcements, read our Tech Community blog post.

Expanding comprehensive security with product innovations

We continue to offer one of the most comprehensive security solutions in the market and power it with world-class global threat intelligence. Today we announced the following innovations:

  • Microsoft Sentinel: To simplify budgeting, billing, and cost management, the Microsoft Sentinel price now includes the Azure Monitor Log Analytics price. To learn more, read the announcement blog.
  • Microsoft Defender Experts for XDR: A new managed service gives customers step-by-step guidance to respond to incidents, receive expertise when they need it, and stay ahead of emerging threats.
  • Microsoft Purview Insider Risk Management: With the new bring-your-own-detections capabilities, partners can help their customers create custom indicators by bringing in detections from non-Microsoft sources, such as a customer relationship management system like Salesforce or a developer tool like GitHub.
  • Microsoft Defender for Cloud Apps: The new open app connector platform makes it easier for partners to plug their solutions into our platform. New API connectors include the preview of Asana and Miro as well as the general availability of software as a service security posture management capabilities for DocuSign, Citrix, Okta and GitHub.
  • Microsoft Defender for Endpoint: The settings management experience is now natively embedded into Microsoft Defender for Endpoint for Windows, Linux, and macOS, removing dependencies on Microsoft Intune and the need to switch between portals.
  • Microsoft Defender Threat Intelligence: Graph APIs now enable simple exporting and ingestion of data to Microsoft Defender, Microsoft Sentinel, and third-party applications.
  • Microsoft Purview eDiscovery: Now generally available, the Microsoft Graph eDiscovery Export API will enable external applications and partners to integrate the eDiscovery export function through scripting.
  • Microsoft Purview Information Protection: With this update, confidential and highly sensitive Excel files that are labeled and protected by Microsoft Purview Information Protection can continue to be protected when imported into Microsoft Power BI datasets and reports throughout their lifecycle. Additionally, documents in SharePoint and OneDrive now support labeled and encrypted documents with user-defined permissions. Co-authoring for Word, Excel, and PowerPoint apps now enables document owners to define permissions for people who can have access to shared sensitive documents that are encrypted.
  • Microsoft Purview Data Loss Prevention: Microsoft Purview Data Loss Prevention introduces a new capability to allow security teams to create policies that prevent their users from pasting sensitive data to specific websites or web applications.
  • Microsoft Defender for External Attack Surface Management: With External Attack Surface Management, you can leverage new data connections to seamlessly integrate your attack surface data into other Microsoft solutions, including Azure Data Explorer and Log Analytics. These data connections will help you supplement workflows with new insights, which will enable you make informed security decisions based on more comprehensive information.

We have been innovating rapidly across the entire Microsoft Security portfolio. In case you missed them, here are a few of our most recent announcements.

  • Two new Security Service Edge solutions: Microsoft Entra Internet Access helps protect access against malicious traffic and threats from the open internet. Microsoft Entra Private Access helps secure access to private apps and resources from any device and network.
  • Microsoft Azure Active Directory is now Microsoft Entra ID: To unify our product family, we changed the name of Microsoft Azure Active Directory to Microsoft Entra ID.
  • Microsoft Intune Suite: In March 2023, we launched the Intune Suite, which unifies mission-critical advanced endpoint management and security solutions into one simple bundle. The suite’s AI-powered automation empowers IT and security teams to move simply and quickly from reactive to proactive in addressing security challenges.
  • Adaptive Protection in Microsoft Purview: In early 2023, we launched Adaptive Protection in Microsoft Purview. This new capability dynamically updates data loss prevention controls and policies, turning them to individual users and helping customers identify and mitigate the most critical risks. This saves security teams valuable time while ensuring better data security. Learn more about the features and benefits of Adaptive Protection.
  • Microsoft Sentinel reduces investigation time by 88 percent: This year, we unveiled a new context-focused incident investigation experience for Microsoft Sentinel that enables security analysts to reduce their investigation time by up to 88 percent.7 We also delivered the ability to automatically disrupt in-progress attacks in Microsoft 365 Defender to help customers prevent devasting breaches. 

2023 Security Partner of the Year Awards

We are excited to announce our 2023 Security Partner of the Year Award winners.

Security Partner of the Year: BDO Digital

BDO Digital is a global company that offers detection, automation, and reduction of overall cybersecurity risks. Many of BDO’s clients’ legacy tools were not equipped to deal with modern infrastructure, and internal security teams did not have the bandwidth to monitor and triage security events. BDO helped improve its clients’ cybersecurity posture by reducing actionable alerts by over 50 percent.

Compliance Partner of the Year: Epiq

Epiq offers advanced data security technology solutions, such as a unique Chat Connector for Microsoft Teams that allows legal teams to effectively assess data for relevant and privileged content. 

Building securely together

As we all consider what we can accomplish with AI now and in the future, I cannot overstate the importance of end-to-end security. This is exactly where we recommend you start with your customers. Help them strengthen their security posture now so that when they deploy AI, they are not vulnerable to attacks. AI solutions will only ever be as strong as their underlying security.

As with any product design, we hold ourselves to high security standards when building, developing, and deploying AI-powered solutions from platforms to applications to processes. We maintain rigorous responsible AI practices, aimed at understanding and mitigating harms, measuring the quality of responses, and fostering a continuous learning environment from customer feedback. A cornerstone of these standards is our commitment to developing solutions that are “secure by design and secure by default.” However, it is important to note that the robustness of security is significantly enhanced when users actively manage and maintain it. Our focus extends to ensuring robust control over data, meaning it won’t be used to train AI models without explicit permission. We advocate for our partners to adhere to these benchmarks while crafting and implementing AI-based offerings for customers—whether the aim is to enhance productivity, automate a business process, or safeguard against threats.

Connect with us at Microsoft Inspire 2023

Microsoft Inspire 2023 is an incredible opportunity to share all the ways AI can support security efforts with our partner ecosystem. If you haven’t registered, there’s still time to reserve your complimentary spot. There, you’ll hear strategies to prepare your organization for AI with comprehensive security and security posture. Hope to see you in these sessions!

Learn more

To learn more about Microsoft Security solutions, visit our website. Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us on LinkedIn (Microsoft Security) and Twitter (@MSFTSecurity) for the latest news and updates on cybersecurity.


1Microsoft internal data.

2Internet Crime Report, Federal Bureau of Investigation. 2022.

3The Partner Opportunity For Microsoft Security, Forrester. July 2023.

4Gartner® Market Guide for Managed Detection and Response Services, Pete Shoard, Al Price, Mitchell Schneider, Craig Lawson, Andrew Davies. February 14, 2023. 

5The Devastating Impact of Ransomware Attacks on Small Businesses, Quinn Cleary. April 4, 2023.

62022 Cybersecurity Workforce Study, (ISC)². 2022.

7The Total Economic Impact™ Of Microsoft SIEM And XDR, Forrester. August 2022.

GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved. 

The post Microsoft Inspire: Partner resources to prepare for the future of security with AI appeared first on Microsoft Security Blog.

]]>