Blizzard News and Insights | Microsoft Security Blog http://approjects.co.za/?big=en-us/security/blog/tag/blizzard/ Expert coverage of cybersecurity topics Wed, 12 Feb 2025 22:31:02 +0000 en-US hourly 1 https://wordpress.org/?v=6.7.2 The BadPilot campaign: Seashell Blizzard subgroup conducts multiyear global access operation http://approjects.co.za/?big=en-us/security/blog/2025/02/12/the-badpilot-campaign-seashell-blizzard-subgroup-conducts-multiyear-global-access-operation/ Wed, 12 Feb 2025 17:00:00 +0000 Microsoft is publishing for the first time our research into a subgroup within the Russian state actor Seashell Blizzard and its multiyear initial access operation, tracked by Microsoft Threat Intelligence as the “BadPilot campaign”. This subgroup has conducted globally diverse compromises of Internet-facing infrastructure to enable Seashell Blizzard to persist on high-value targets and support tailored network operations.

The post The BadPilot campaign: Seashell Blizzard subgroup conducts multiyear global access operation appeared first on Microsoft Security Blog.

]]>
Microsoft is publishing for the first time our research into a subgroup within the Russian state actor Seashell Blizzard and its multiyear initial access operation, tracked by Microsoft Threat Intelligence as the “BadPilot campaign”. This subgroup has conducted globally diverse compromises of Internet-facing infrastructure to enable Seashell Blizzard to persist on high-value targets and support tailored network operations. This blog details this subgroup’s recently observed tactics, techniques, and procedures (TTPs), and describes three of its distinct exploitation patterns. The geographical targeting to a near-global scale of this campaign expands Seashell Blizzard’s scope of operations beyond Eastern Europe. Additionally, the opportunistic access methods outlined in this campaign will continue to offer Russia opportunities for niche operations and activities.

Active since at least 2021, this subgroup within Seashell Blizzard has leveraged opportunistic access techniques and stealthy forms of persistence to collect credentials, achieve command execution, and support lateral movement that has at times led to substantial regional network compromises. Observed operations following initial access indicate that this campaign enabled Seashell Blizzard to obtain access to global targets across sensitive sectors including energy, oil and gas, telecommunications, shipping, arms manufacturing, in addition to international governments. We assess that this subgroup has been enabled by a horizontally scalable capability bolstered by published exploits that allowed Seashell Blizzard to discover and compromise numerous Internet-facing systems across a wide range of geographical regions and sectors. Since early 2024, the subgroup has expanded its range of access to include targets in the United States and United Kingdom by exploiting vulnerabilities primarily in ConnectWise ScreenConnect (CVE-2024-1709) IT remote management and monitoring software and Fortinet FortiClient EMS security software (CVE-2023-48788). These new access operations built upon previous efforts between 2021 and 2023 which predominantly affected Ukraine, Europe, and specific verticals in Central and South Asia, and the Middle East.

Microsoft Threat Intelligence assesses that while some of the subgroup’s targeting is opportunistic, its compromises cumulatively offer Seashell Blizzard options when responding to Russia’s evolving strategic objectives. Since April 2022, Russia-aligned threat actors have increasingly targeted international organizations that are either geopolitically significant or provide military and/or political support to Ukraine. In addition to establishing access to these targets outside Ukraine, we assess that the subgroup has likely enabled at least three destructive cyberattacks in Ukraine since 2023 (see below discussion of Seashell Blizzard for more information about their activities against Ukraine).  

Seashell Blizzard’s far-reaching access operations pose a significant risk to organizations within the group’s strategic purview. Despite the commodity nature of this subgroup’s exploitation patterns, notable shifts within the actor’s post-compromise tradecraft are reflected within the subgroup’s activities, which may carry over to other aspects of Seashell Blizzard’s more traditional operations and carry more significant implications for auditing during incident response. 

Microsoft Threat Intelligence tracks campaigns launched by Seashell Blizzard as well as this subgroup, and when able, directly notifies customers who have been targeted or compromised, providing them with the necessary information to help secure their environments. As part of our continuous monitoring, analysis, and reporting on the threat landscape, we are sharing our research on this campaign’s activity to raise awareness of the observed TTPs and to educate organizations on how to harden their attack surfaces against this and similar activity. 

Who is Seashell Blizzard?

Seashell Blizzard is a high-impact threat actor linked to the Russian Federation that conducts global activities on behalf of Russian Military Intelligence Unit 74455 (GRU). Seashell Blizzard’s specialized operations have ranged from espionage to information operations and cyber-enabled disruptions, usually in the form of destructive attacks and manipulation of industrial control systems (ICS). Active since at least 2013, this threat actor’s prolific operations include destructive attacks such as KillDisk (2015) and FoxBlade (2022), supply-chain attacks (MeDoc, 2017), and pseudo-ransomware attacks such as NotPetya (2017) and Prestige (2022), in addition to numerous other specialized disruptive capabilities. Seashell Blizzard is assessed to be highly skilled at enabling broad and persistent access against priority computer networks, which sometimes gives the group significant tenure for future potential follow-on activity.

Due to their specialization in computer network exploitation (CNE) and expertise targeting critical infrastructure such as ICS and supervisory control and data acquisition systems (SCADA), Seashell Blizzard’s operations have frequently been leveraged during military conflicts and as an adaptable element during contentious geopolitical events. Historically, some of Seashell Blizzard’s operations may be considered part of a spectrum of retaliatory actions sometimes used by the Russian Federation. Since Russia’s invasion of Ukraine in 2022, Seashell Blizzard has conducted a steady stream of operations complementing Russian military objectives. The threat actor’s longstanding strategic targets in the region have included critical infrastructure such as energy and water, government, military, transportation and logistics, manufacturing, telecommunications, and other supportive civilian infrastructure.

Since at least April 2023, Seashell Blizzard has increased targeting of military communities in the region, likely for tactical intelligence gain. Their persistent targeting of Ukraine suggests Seashell Blizzard is tasked to obtain and retain access to high-priority targets to provide the Russian military and Russian government a range of options for future actions.

Seashell Blizzard’s network intrusions leverage diverse tradecraft and typically employ a range of common publicly available tools, including Cobalt Strike and DarkCrystalRAT. Network intrusions linked to the threat actor have affected multiple tiers of infrastructure, showcasing Seashell Blizzard’s abilities to target end users, network perimeters, and vertical-specific systems leveraging both publicly available and custom exploits and methods.

Since February 2022, Seashell Blizzard has generally taken three approaches to their network intrusions:

  • Targeted: Seashell Blizzard has frequently used tailored mechanisms to access targets, including scanning and exploitation of specific victim infrastructure, phishing, and modifying legitimate functionality of existing systems to either expand network access or obtain confidential information.
  • Opportunistic: Seashell Blizzard has increasingly used broad exploitation of Internet-facing infrastructure and distribution of malware implants spread through trojanized software to achieve scalable but indiscriminate access. In cases where a resulting victim is identified as strategically valuable, Microsoft Threat Intelligence has observed the threat actor conducting significant post-compromise activities.
  • Hybrid: Seashell Blizzard has very likely gained access to target organizations using a limited supply-chain attack narrowly focused within Ukraine, an operation that was recently mitigated by the Computer Emergency Response Team of Ukraine (CERT-UA). Other hybrid methods have included compromise of regional managed IT service providers, which often afforded regional or vertical-specific access to diverse targets.

Seashell Blizzard overlaps with activity tracked by other security vendors as BE2, UAC-0133, Blue Echidna, Sandworm, PHANTOM, BlackEnergy Lite, and APT44.

Attribution assessment

Microsoft Threat Intelligence assesses that the initial access subgroup is linked to Seashell Blizzard. Despite the subgroup’s opportunistic tactics, we are able to distinguish this subgroup due to its consistent use of distinct exploits, tooling, infrastructure, and late-stage methods used to establish persistence. Moreover, our longstanding forensic investigation uncovered distinct post-compromise activities, a part of which incorporated specific operational capabilities and resources chiefly utilized by Seashell Blizzard. We have also observed the initial access subgroup to pursue access to an organization prior to a Seashell Blizzard-linked destructive attack.

Microsoft Threat Intelligence assesses that Seashell Blizzard uses this initial access subgroup to horizontally scale their operations as new exploits are acquired and to sustain persistent access to current and future sectors of interest to Russia. This subgroup conducts broad operations against a variety of sectors and geographical areas. In 2022, its primary focus was Ukraine, specifically targeting the energy, retail, education, consulting, and agriculture sectors. In 2023, it globalized the scope of its compromises, leading to persistent access within numerous sectors in the United States, Europe, Central Asia, and the Middle East. It frequently prioritized sectors that either provided material support to the war in Ukraine or were geopolitically significant. In 2024, while the exposure of multiple vulnerabilities likely offered the subgroup more access than ever, it appeared to have honed its focus to the United States, Canada, Australia, and the United Kingdom.

This subgroup’s historical pattern of exploitation has also led to the compromise of globally diverse organizations that appear to have limited or no utility to Russia’s strategic interests. This pattern suggests the subgroup likely uses an opportunistic “spray and pray” approach to achieving compromises at scale to increase the likelihood of acquiring access at targets of interest with limited tailored effort. In cases where a strategically significant target is compromised, we have observed significant later post-compromise activity. The geographic focus of the subgroup frequently transitions between broad campaigns against multiple geographic targets and a narrow focus on specific regions or countries, demonstrating the subgroup’s flexibility to pursue unique regional objectives.

Map showing the geographical spread of the Seashell Blizzard initial access subgroup targets
Figure 1. The geographical spread of the initial access subgroup’s targets

Initial access subgroup opportunistically compromises perimeter infrastructure using published CVEs

Since late 2021, Seashell Blizzard has used this initial access subgroup to conduct targeted operations by exploiting vulnerable Internet-facing infrastructure following discovery through direct scanning and, more uniquely, use of third-party internet scanning services and knowledge repositories. These exploitation efforts are followed by an operational lifecycle using a consistent set of TTPs to support persistence and lateral movement, which have incrementally evolved to become more evasive over time. Microsoft Threat Intelligence has identified at least three distinct exploitation patterns and operational behaviors linked to this subgroup, which are described in more detail below:

Diagram showing the initial access subgroup operational lifecycle, from initial access to persistence and lateral movement
Figure 2. Seashell Blizzard initial access subgroup operational lifecycle

To date, at least eight vulnerabilities common within specific categories of server infrastructure typically found on network perimeters of small office/home office (SOHO) and enterprise networks have been exploited by this subgroup:

In nearly all cases of successful exploitation, Seashell Blizzard carried out measures to establish long-term persistence on affected systems. This persistent access is noted in at least three cases to have preceded select destructive attacks attributed to Seashell Blizzard, highlighting that the subgroup may periodically enable destructive or disruptive attacks.

Exploitation patterns

We have observed the initial access subgroup using three specific exploit patterns:

Deployment of remote management and monitoring (RMM) suites for persistence and command and control (February 24, 2024 – present)

In early 2024, the initial access subgroup began using RMM suites, which was a novel technique used by Seashell Blizzard to achieve persistence and command and control (C2). This was first observed when the subgroup exploited vulnerabilities in ConnectWise ScreenConnect (CVE-2024-1709) and Fortinet FortiClient EMS (CVE-2023-48788). The subgroup then deployed RMM software such as Atera Agent and Splashtop Remote Services. The use of RMM software allowed the threat actor to retain critical C2 functions while masquerading as a legitimate utility, which made it less likely to be detected than a remote access trojan (RAT). While these TTPs have been used by other nation-state threat actors since at least 2022, including by Iranian state actor Mango Sandstorm, the Seashell Blizzard initial access subgroup’s specific techniques are considered distinct.

Diagram showing the use of ScreenConnect exploitation to install Atera agent, which then deploys ShadowLink and OpenSSH
Figure 3. Use of ScreenConnect to install Atera Agent

During the first weeks of this exploitation pattern, the initial access subgroup primarily targeted organizations in Ukraine, the United States, Canada, the United Kingdom, and Australia. It is highly likely that Seashell Blizzard conducted post-compromise activity at only a limited number of organizations that were part of this initial victim pool. For these organizations, Seashell Blizzard conducted preliminary credential access through multiple means and deployed at least one custom utility to facilitate remote access and tunneling (see the section on ShadowLink below for more information).

Both CVE-2024-1709 and CVE-2023-48788 provided the ability to launch arbitrary commands on a vulnerable server. Following exploitation, the subgroup used two methods of payload retrieval to install RMM agents on affected servers:

  • Retrieval of Atera Agent installers from legitimate agent endpoints – Commonly observed on exploited ScreenConnect servers, Seashell Blizzard used resulting command execution to retrieve Atera installers via Bitsadmin and curl from legitimate installation URLs hosted by Atera.
Screenshot of commend to retrieve Atera installers via Bitsadmin and curl
  • Retrieval of Atera Agent from actor-controlled infrastructure – During exploitation of CVE-2023-48788 between April 9 and April 10, 2024, Seashell Blizzard retrieved remote agent installers from actor-controlled virtual private server (VPS) infrastructure.
Screenshot of command for retrieving agent installers from actor-controlled VPS

Following installation of RMM software, Seashell Blizzard uses the native functionality of the agents to deploy secondary tools to help credential acquisition, data exfiltration, and upload of custom utilities to facilitate more robust access to compromised systems.

Seashell Blizzard likely uses three primary methods of credential access:

  • Registry-based credential access via reg.exe:
Screenshot of command for registry-based credential access
  • Credential access via renamed procdump:
Screenshot of credential access via a renamed procdump
  • Since RMM agents typically afford an interactive graphical interface, native credential access mechanisms common via task manager were likely also carried out. In addition, credential access via Taskmanager UI by LSASS process dumping was likely also employed.

During Seashell Blizzard intrusions, we observed rclone.exe deployed to affected servers and subsequently used to carry out data exfiltration using an actor-supplied configuration file.

Screenshot of command for data exfiltration using a configuration file

Among a subgroup of victims, Seashell Blizzard carried out unique post-compromise activity, indicating that the threat actor sought more durable persistence and direct access. In these cases, Seashell Blizzard deployed OpenSSH with a unique public key, allowing them to access compromised systems using an actor-controlled account and credential, in addition to a unique persistence and assured C2 method known to Microsoft Threat Intelligence as ShadowLink.

Diagram showing how ShadowLink avoids discovery by configuring the target system to be registered as a Tor hidden service.
Figure 4. How ShadowLink avoids discovery

ShadowLink facilitates persistent remote access by configuring a compromised system to be registered as a Tor hidden service. This is achieved using a combination of Tor service binaries and a unique actor-defined Tor configuration file (referred as the ‘torrc’) configuring the system for remote access. Systems compromised with ShadowLink receive a unique .onion address, making them remotely accessible via the Tor network. This capability allows Seashell Blizzard to bypass common exploit patterns of deploying a RAT, which commonly leverages some form of C2 to actor-controlled infrastructure that are often easily audited and identified by network administrators. Instead, by relying on Tor hidden services, the compromised system creates a persistent circuit to the Tor network, acting as a covert tunnel, effectively cloaking all inbound connections to the affected asset and limiting exposures from both the actor and victim environment.

ShadowLink contains two primary components: a legitimate Tor service binary and a torrc which contains requisite configurations for the Tor hidden services address—specifically, port-forwarding for common services such as Remote Desktop Protocol (RDP) and SecureShell (SSH) Protocol. Commonly, Seashell Blizzard has utilized ShadowLink to redirect inbound connections to the Tor hidden service address to ports for RDP (3389). ShadowLink persisted via a system service:

Screenshot of a command for persistence via a system service

Microsoft Threat Intelligence has also observed Forest Blizzard, a separate GRU actor, leveraging similar Tor-based capabilities in their operations.

Web shell deployment for persistence and C2 (late 2021 – present)

Since late 2021, the Seashell Blizzard initial access subgroup has primarily deployed web shells following successful exploitation to maintain footholds and achieve the ability to execute commands necessary to deploy secondary tooling to assist lateral movement. To date, this exploit pattern remains its predominant persistence method. Beginning in mid-2022, this pattern of exploitation enabled unique post-compromise activities against organizations in Central Asia and Europe, which were likely intended to further Russia’s geopolitical objectives and preposition against select strategic targets.

Diagram showing exploitation of Exchange and Zimbra vulnerabilities to retrieve or deploy web shells
Figure 5. Seashell Blizzard exploitation of CVE-2021-34473 and CVE-2022-41352

Exploitation of Microsoft Exchange and Zimbra vulnerabilities

Microsoft Threat Intelligence has identified at least two web shells consistently deployed by this initial access subgroup. While web shells can be deployed using a variety of methods, they are most often deployed following the exploitation of vulnerabilities allowing remote code execution (RCE) or achieving some level of arbitrary file upload. In the case of the initial access subgroup, we have observed web shells deployed following exploitation of vulnerabilities in Microsoft Exchange (CVE-2021-34473) and Zimbra (CVE-2022-41352). In cases where RCE is available, the initial access subgroup routinely retrieves web shells from actor-controlled infrastructure. This infrastructure can be either legitimate but compromised websites or dedicated actor infrastructure.

We observed the following web shell retrieval commands being used:

Screenshot of command to retrieve web shells

Microsoft Threat Intelligence has identified a web shell that we assess as exclusive to the initial access subgroup and is associated with the previously mentioned web shell retrieval patterns. Detected as LocalOlive, this web shell is identified on compromised perimeter infrastructure and serves as the subgroup’s primary means of achieving C2 and deploying additional utilities to compromised infrastructure. Written in ASPX supporting C#, the web shell carries sufficient yet rudimentary functionality to support the following secondary activities:

  • Upload and download files
  • Run shell commands
  • Open a port (default port is set to TCP 250)
Screenshot of LocalOlive web shell

Figure 6. LocalOlive web shell def.aspx

On October 24, 2022, the initial access subgroup successfully exploited CVE-2022-41352. This Zimbra Collaborative vulnerability allows a threat actor to deploy web shells and other arbitrary files by sending an email with a specially crafted attachment, effectively exploiting an arbitrary file-write vulnerability. The initial access subgroup leveraged this vulnerability to deliver a primitive web shell to affected servers, allowing for execution of arbitrary commands.

Emails were sent from the following actor-controlled addresses:

  • akfcjweiopgjebvh@proton.me
  • ohipfdpoih@proton.me
  • miccraftsor@outlook.com
  • amymackenzie147@protonmail.ch
  • ehklsjkhvhbjl@proton.me
  • MirrowSimps@outlook.com
Screenshot of web shell for Zimba exploitation

Figure 7. Web shell used during Zimbra exploitation

Reconnaissance and fingerprinting

After deploying web shells, the initial access subgroup then executes specific sequential commands below likely used to fingerprint and attribute victim networks; these patterns of behavior may indicate that either operators are quick to capitalize on compromises or the possible use of automation following successful exploitation.

Screenshot of sequential commands to fingerprint and attribute victim networks

Tunneling utilities deployment

When Seashell Blizzard identifies targets of likely strategic value, it often furthers its network compromise by deploying tunneling utilities such as Chisel, plink, and rsockstun to established dedicated conduits into affected network segments.

When Chisel is deployed, it often followed multiple naming conventions, including:

  • MsChSoft.exe
  • MsNan.exe
  • Msoft.exe
  • Chisel.exe
  • Win.exe
  • MsChs.exe
  • MicrosoftExchange32.exe
  • Desk.exe
  • Sys.exe

For example, the initial access subgroup has used the following tunneling commands:

Screenshot of tunneling commands

When rsockstun is deployed, it has used naming conventions such as Sc.exe.

Tunneling launch

When establishing tunnels, the initial access subgroup has routinely established reverse tunnels to exclusive VPS actor-owned infrastructure, including:

Tunneling IPFirst observed usedLast observed used
103.201.129[.]130May 2022July 2022
104.160.6[.]2September 2022December 2022
195.26.87[.]209September 2023April 2024

Note that these IP addresses are relevant within or around the timeframes enumerated in the table above. Some IP addresses may no longer be used by Seashell Blizzard at the time of this writing but are provided for historical and forensic understanding.

Modification of infrastructure to expand network influence through credential collection (late 2021 – 2024)

In targeted operations where the initial access subgroup is likely seeking network access, Microsoft Threat Intelligence has observed subsequent malicious modifications to network resources including Outlook Web Access (OWA) sign-in pages and DNS configurations.

Diagram of attack chain for exploitation of Outlook Web Access
Figure 8. Simple attack chain for Seashell Blizzard exploitation of OWA

Modifying network resources allows Seashell Blizzard to passively gather relevant network credentials, which may be used to expand the actor’s access to sensitive information and widen its access to target networks in general. Notably, the infrastructure associated with this unique technique is sometimes also used in the two prior exploitation patterns, highlighting the versatility of late-stage infrastructure which may not always be limited to distinct patterns of exploitation.

Modification of web access sign-in portals

The initial access subgroup uses rogue JavaScript inserted into otherwise legitimate sign-in portals. This malicious JavaScript collects and sends clear text usernames and passwords to actor-controlled infrastructure as they are submitted in real time by users of the affected organization. We assess that this method has likely afforded the subgroup credentials to support lateral movement within several organizations.

Microsoft Threat Intelligence has tracked the following actor-controlled infrastructure linked to this unique credential collection method when modifying legitimate OWA sign-in pages:

  • hwupdates[.]com
  • cloud-sync[.]org
  • 103.201.129[.]130
Screenshot of credential collection from OWA
Figure 9. Seashell Blizzard credential collection from OWA

Modification of DNS configurations

Microsoft Threat Intelligence assesses with moderate confidence that the initial access subgroup has modified DNS A record configurations for select targets. While the purpose of these modifications is unclear, due to the nature of affected systems, it is possible that they may have been purposed to intercept credentials from critical authentication services.

Conclusion

Given that Seashell Blizzard is Russia’s cyber tip of the spear in Ukraine, Microsoft Threat Intelligence assesses that this access subgroup will continue to innovate new horizontally scalable techniques to compromise networks both in Ukraine and globally in support of Russia’s war objectives and evolving national priorities. This subgroup, which is characterized within the broader Seashell Blizzard organization by its near-global reach, represents an expansion in both the geographical targeting conducted by Seashell Blizzard and the scope of its operations. At the same time, Seashell Blizzard’s far-reaching, opportunistic access methods likely offer Russia expansive opportunities for niche operations and activities that will continue to be valuable over the medium term.

Mitigation and protection guidance

To harden networks against the Seashell Blizzard activity listed above, defenders can implement the following:

Strengthen operating environment configuration

  • Utilize a vulnerability management system, such as Microsoft Defender Vulnerability Management, to manage vulnerabilities, weaknesses, and remediation efforts across your environment’s operating systems, software inventories, and network devices.
  • Require multifactor authentication (MFA). While certain attacks such as AiTM phishing attempt to circumvent MFA, implementation of MFA remains an essential pillar in identity security and is highly effective at stopping a variety of threats.
  • Implement Entra ID Conditional Access authentication strength to require phishing-resistant authentication for employees and external users for critical apps.
  • Encourage users to use Microsoft Edge and other web browsers that support Microsoft Defender SmartScreen, which identifies and blocks malicious websites, including phishing sites, scam sites, and sites that host malware.
  • Organizations can also use Microsoft Defender External Attack Surface Management (EASM) , a tool that continuously discovers and maps digital attack surface to provide an external view of your online infrastructure. EASM leverages vulnerability and infrastructure data to generate Attack Surface Insights, reporting that highlights key risks to a given organization.
  • Enable Network Level Authentication for Remote Desktop Service connections.
  • Enable AppLocker to restrict specific software tools prohibited within the organization, such as reconnaissance, fingerprinting, and RMM tools, or grant access to only specific users.

Strengthen Microsoft Defender for Endpoint configuration

  • Ensure that tamper protection is enabled in Microsoft Defender for Endpoint. 
  • Enable network protection in Microsoft Defender for Endpoint. 
  • Turn on web protection.
  • Run endpoint detection and response (EDR) in block mode so that Microsoft Defender for Endpoint can block malicious artifacts, even when your non-Microsoft antivirus does not detect the threat or when Microsoft Defender Antivirus is running in passive mode. EDR in block mode works behind the scenes to remediate malicious artifacts that are detected post-breach.     
  • Configure investigation and remediation in full automated mode to let Microsoft Defender for Endpoint take immediate action on alerts to resolve breaches, significantly reducing alert volume.  
  • Microsoft Defender XDR customers can turn on the following attack surface reduction rules to prevent common attack techniques used by threat actors. 
    • Block executable content from email client and webmail 
    • Block executable files from running unless they meet a prevalence, age, or trusted list criterion 
    • Block execution of potentially obfuscated scripts
    • Block JavaScript or VBScript from launching downloaded executable content
    • Block process creations originating from PSExec and WMI commands

Strengthen Microsoft Defender Antivirus configuration

Strengthen Microsoft Defender for Office 365 configuration

  • Turn on Safe Links and Safe Attachments in Microsoft Defender for Office 365.
  • Enable Zero-hour auto purge (ZAP) in Microsoft Defender for Office 365 to quarantine sent mail in response to newly acquired threat intelligence and retroactively neutralize malicious phishing, spam, or malware messages that have already been delivered to mailboxes.
  • Invest in advanced anti-phishing solutions that monitor incoming emails and visited websites. Microsoft Defender for Office 365 merges incident and alert management across email, devices, and identities, centralizing investigations for email-based threats.
  • Configure Microsoft Defender for Office 365 to recheck links on click.
  • Use the Attack Simulator in Microsoft Defender for Office 365 to run realistic, yet safe, simulated phishing and password attack campaigns. Run spear-phishing (credential harvest) simulations to train end-users against clicking URLs in unsolicited messages and disclosing credentials.

Strengthen Microsoft Defender for Identity configuration

Microsoft Defender XDR detections

Microsoft Defender Antivirus 

Microsoft Defender Antivirus detects this threat as the following malware: 

Microsoft Defender for Endpoint

The following Microsoft Defender for Endpoint alerts can indicate associated threat activity:

  • Seashell Blizzard activity group

The following alerts might also indicate threat activity related to this threat. Note, however, these alerts also can be triggered by unrelated threat activity.

  • Possible Seashell Blizzard activity
  • Suspicious Atera installation via ScreenConnect
  • Suspicious command execution via ScreenConnect
  • Suspicious sequence of exploration activities
  • CredentialDumpingViaEsentutlDetector
  • Suspicious behavior by cmd.exe was observed
  • SQL Server login using xp_cmdshell
  • Suspicious port scan activity within an RDP session
  • Suspicious connection to remote service
  • Suspicious usage of remote management software
  • New local admin added using Net commands
  • Sensitive data was extracted from registry
  • Suspicious Scheduled Task Process Launched
  • Potential human-operated malicious activity
  • Compromised account conducting hands-on-keyboard attack
  • Sensitive file access for possible data exfiltration or encryption
  • Possible Fortinet FortiClientEMS vulnerability exploitation
  • Possible target of NTLM credential theft
  • Possible exploitation of ProxyShell vulnerabilities
  • Possibly malicious use of proxy or tunneling tool
  • Hidden dual-use tool launch attempt

Microsoft Defender for Cloud

The following alerts might also indicate threat activity associated with this threat. These alerts, however, can be triggered by unrelated threat activity and are not monitored in the status cards provided with this report.

  • Communication with suspicious domain identified by threat intelligence
  • Suspicious PowerShell Activity Detected
  • Detected suspicious combination of HTA and PowerShell
  • Detected encoded executable in command line data
  • Detected obfuscated command line

Threat intelligence reports

Microsoft customers can use the following reports in Microsoft products to get the most up-to-date information about the threat actor, malicious activity, and techniques discussed in this blog. These reports provide the intelligence, protection information, and recommended actions to prevent, mitigate, or respond to associated threats found in customer environments. Microsoft Security Copilot customers can also use the Microsoft Security Copilot integration in Microsoft Defender Threat Intelligence to get more information about this threat actor.

Microsoft Defender Threat Intelligence

Hunting queries  

Microsoft Defender XDR

The following sample queries let you search for a week’s worth of events. To explore up to 30 days’ worth of raw data to inspect events in your network and locate potential PowerShell-related indicators for more than a week, go to the Advanced hunting page > Query tab, select the calendar dropdown menu to update your query to hunt for the Last 30 days.

ScreenConnect

Surface the possible exploitation of ScreenConnect to launch suspicious commands.

DeviceProcessEvents
   | where InitiatingProcessParentFileName endswith "ScreenConnect.ClientService.exe"
   | where (FileName in~ ("powershell.exe", "powershell_ise.exe", "cmd.exe") and
            ProcessCommandLine has_any ("System.DirectoryServices.ActiveDirectory.Domain", "hidden -encodedcommand", "export-registry", "compress-archive", "wget -uri", "curl -Uri", "curl -sko", "ipconfig /all", "& start /B", "start msiexec /q /i", "whoami", "net user", "net group", "localgroup administrators", "dsquery", "samaccountname=", "query session", "adscredentials", "o365accountconfiguration", "-dumpmode", "-ssh", "o           or (FileName =~ "wget.exe" and ProcessCommandLine contains "http")
           or (FileName =~ "mshta.exe" and ProcessCommandLine contains "http")
           or (FileName =~ "curl.exe" and ProcessCommandLine contains "http")
           or ProcessCommandLine has_all ("powershell", "-command", "curl")
           or ProcessCommandLine has_any ("E:jscript", "e:vbscript", "start msiexec /q /i")
           or ProcessCommandLine has_all ("reg add", "DisableAntiSpyware", @"\Microsoft\Windows Defender")
           or ProcessCommandLine has_all ("reg add", "DisableRestrictedAdmin", @"CurrentControlSet\Control\Lsa")
           or ProcessCommandLine has_all ("vssadmin", "delete", "shadows")
           or ProcessCommandLine has_all ("vssadmin", "list", "shadows")
           or ProcessCommandLine has_all ("wmic", "process call create")
           or ProcessCommandLine has_all ("wmic", "delete", "shadowcopy")
           or ProcessCommandLine has_all ("wmic", "shadowcopy", "call create")
           or ProcessCommandLine has_all ("wbadmin", "delete", "catalog")
           or ProcessCommandLine has_all ("ntdsutil", "create full")
           or (ProcessCommandLine has_all ("schtasks", "/create") and not(ProcessCommandLine has "shutdown"))
           or (ProcessCommandLine has "nltest" and ProcessCommandLine has_any ("domain_trusts", "dclist", "all_trusts"))
           or (ProcessCommandLine has "lsass" and ProcessCommandLine has_any ("procdump", "tasklist", "findstr"))
           or FileName in~ ("tasklist.exe", "ssh.exe", "icacls.exe", "certutil.exe", "calc.exe", "bitsadmin.exe", "accesschk.exe", "mshta.exe",
                                      "winrm.exe", "dsquery.exe", "makecab.exe", "hh.exe", "pcalua.exe", "regsvr32.exe",
                                      "cmstp.exe", "esentutl.exe", "dnscmd.exe", "gpscript.exe", "msdt.exe", "msra.exe", "odbcconf.exe")
   | where not(ProcessCommandLine has_any ("servicedesk.atera.com", "support.csolve.net", "lt.tech-keys.com", "certutil  -hashfile"))

FortiClient EMS log capture

If you believe your FortiClient has been exploited before patching, this query may help with further investigation.

According to Horizon3 research, the C:\Program Files (x86)\Fortinet\FortiClientEMS\logs log file can be examined to identify malicious activity. Run the following query to surface devices with this log file for further investigation. 

DeviceFileEvents
| where FileName contains @"C:\Program Files (x86)\Fortinet\FortiClientEMS\logs"
| distinct DeviceName

Additionally, Horizon3 noted that this SQL vulnerability could allow for remote code execution (RCE) using the xp_cmdshell functionality of Microsoft SQL Server. The SQL logs can also be examined for evidence of xp_cmdshell being leveraged to spawn a Windows command shell.

According to Microsoft research, the following query could help surface exploitation activity related to this vulnerability. 

DeviceProcessEvents
| where InitiatingProcessFileName == "sqlservr.exe"
| where FileName =~ "cmd.exe"
| where ProcessCommandLine has_any ("webclient", "downloadstring", "http", "https", "downloadfile")
| where InitiatingProcessCommandLine has_all ("sqlservr.exe", "-sFCEMS")

Tor service

Find services associated with Tor. 

DeviceEvents
| where ActionType == 'ServiceInstalled'
| extend JSON = parse_json(AdditionalFields)
| where JSON.ServiceName has 'tor'

YARA rule

Use the following Yara rule to find malicious JavaScript inserted into OWA sign-in pages.   

rule injected_cred_logger_owa {  
strings:  
$owa = "<!-- OwaPa"   
$jq = "jquery"   
$ajax = ".ajax"   
$keypress = ".keypress"   
$which = "e.which == 13"   
$encoding1 = "btoa"   
$encoding2 = "unescape"   
$encoding3 = "encodeURIComponent"  
$m1 = "GET"   
$m2 = "POST"   
condition:   
$owa and $jq and $ajax and $keypress and $which and (2 of ($encoding*)) and (1 of ($m*))   
}

Microsoft Sentinel 

Microsoft Sentinel customers can use the TI Mapping analytics (a series of analytics all prefixed with ‘TI map’) to automatically match the malicious domain indicators mentioned in this blog post with data in their workspace. If the TI Map analytics are not currently deployed, customers can install the Threat Intelligence solution from the Microsoft Sentinel Content Hub to have the analytics rule deployed in their Sentinel workspace.  

While the below query is not linked to any specific threat actor, it is effective in surfacing network connectivity that may indicate use of remote monitoring and management program ScreenConnect. Implementing this query can help you stay vigilant and safeguard your organization from unauthorized use of RMM software:

Below are the queries using Sentinel ASIM Functions to hunt threats across both Microsoft first-party and third-party data sources. ASIM also supports deploying parsers to specific workspaces from GitHub, using an ARM template or manually.

Below query can be used to hunt normalized Network Session events using the ASIM unifying parser _Im_NetworkSession for IOCs:

    let lookback = 30d;
    let ioc_ip_addr = dynamic(["103.201.129.130", "104.160.6.2", "195.26.87.209"]);
    let ioc_domains = dynamic(["hwupdates.com", "cloud-sync.org"]);
    _Im_NetworkSession(starttime=todatetime(ago(lookback)), endtime=now())
    | where DstIpAddr in (ioc_ip_addr) or DstDomain has_any (ioc_domains)
    | summarize imNWS_mintime=min(TimeGenerated), imNWS_maxtime=max(TimeGenerated), EventCount=count() by SrcIpAddr, DstIpAddr, DstDomain, Dvc, EventProduct, EventVendor 

Below query can be used to hunt normalized Web Session events using the ASIM unifying parser _Im_WebSession for IOCs:

    let lookback = 30d;
    let ioc_ip_addr = dynamic(["103.201.129.130", "104.160.6.2", "195.26.87.209"]);
    let ioc_url_patterns = dynamic(["hwupdates.com", "cloud-sync.org","def.aspx"]);
    _Im_WebSessionn(starttime=todatetime(ago(lookback)), endtime=now())
    | where url has_any (ioc_url_patterns) or DstIpAddr has_any (ioc_ip_addr)
     | summarize imWS_mintime=min(TimeGenerated), imWS_maxtime=max(TimeGenerated), EventCount=count() by SrcIpAddr, DstIpAddr, Url, Dvc, EventProduct, EventVendor  

Indicators of compromise

IndicatorType
def.aspxLocalOlive web shell
akfcjweiopgjebvh@proton.meActor-controlled email address
ohipfdpoih@proton.meActor-controlled email address
miccraftsor@outlook.comActor-controlled email address
amymackenzie147@protonmail.chActor-controlled email address
ehklsjkhvhbjl@proton.meActor-controlled email address
MirrowSimps@outlook.comActor-controlled email address
MsChSoft.exeChisel tunneling utility
MsNan.exeChisel tunneling utility
Msoft.exeChisel tunneling utility
Chisel.exeChisel tunneling utility
Win.exeChisel tunneling utility
MsChs.exeChisel tunneling utility
MicrosoftExchange32.exeChisel tunneling utility
Sc.exeRocstun tunneling utility
103.201.129[.]130Seashell Blizzard infrastructure
104.160.6[.]2Seashell Blizzard infrastructure
195.26.87[.]209Seashell Blizzard infrastructure
hwupdates[.]comSeashell Blizzard infrastructure
cloud-sync[.]orgSeashell Blizzard infrastructure
c7379b2472b71ea0a2ba63cb7178769d27b27e1d00785bfadac0ae311cc88d8bLocalOlive
b38f1906680c80e1606181b3ccb8539dab5af2a7222165c53cdd68d09ec8abb0LocalOlive
9f3d8252e8f3169751a705151bdf675ac194bfd8457cbe08e1f3c17d7e9e9be2LocalOlive
68c7aab670ee9d7461a4a8f06333994f251dc79813934166421091e2f1fa145cLocalOlive
b9ef2e948a9b49a6930fc190b22cbdb3571579d37a4de56564e41a2ef736767bChisel
636e04f0618dd578d107f440b1cf6c910502d160130adae5e415b2dd2b36abcbLocalOlive
148.251.53[.]222Seashell Blizzard infrastructure
89.149.200[.]91 
17738a27bb307b3cb7bd571934a398223e170842005f1725c46c7075f14e90feSeashell Blizzard infrastructure
cab97e837a3fc095bf59703574cbfa7e60fb10991101ba9bfc9bbf294c18fd97LocalOlive

References

Learn more

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on LinkedIn at https://www.linkedin.com/showcase/microsoft-threat-intelligence, and on X (formerly Twitter) at https://x.com/MsftSecIntel.

To hear stories and insights from the Microsoft Threat Intelligence community about the ever-evolving threat landscape, listen to the Microsoft Threat Intelligence podcast: https://thecyberwire.com/podcasts/microsoft-threat-intelligence.

The post The BadPilot campaign: Seashell Blizzard subgroup conducts multiyear global access operation appeared first on Microsoft Security Blog.

]]>
New Star Blizzard spear-phishing campaign targets WhatsApp accounts http://approjects.co.za/?big=en-us/security/blog/2025/01/16/new-star-blizzard-spear-phishing-campaign-targets-whatsapp-accounts/ Thu, 16 Jan 2025 17:00:00 +0000 In mid-November 2024, Microsoft Threat Intelligence observed the Russian threat actor we track as Star Blizzard sending their typical targets spear-phishing messages, this time offering the supposed opportunity to join a WhatsApp group. This is the first time we have identified a shift in Star Blizzard’s longstanding tactics, techniques, and procedures (TTPs) to leverage a […]

The post New Star Blizzard spear-phishing campaign targets WhatsApp accounts appeared first on Microsoft Security Blog.

]]>
In mid-November 2024, Microsoft Threat Intelligence observed the Russian threat actor we track as Star Blizzard sending their typical targets spear-phishing messages, this time offering the supposed opportunity to join a WhatsApp group. This is the first time we have identified a shift in Star Blizzard’s longstanding tactics, techniques, and procedures (TTPs) to leverage a new access vector. Star Blizzard’s targets are most commonly related to government or diplomacy (both incumbent and former position holders), defense policy or international relations researchers whose work touches on Russia, and sources of assistance to Ukraine related to the war with Russia.

In our last blog post about Star Blizzard, we discussed how the threat actor targeted dozens of civil society organizations—journalists, think tanks, and non-governmental organizations (NGOs)—between January 2023 and August 2024 by deploying spear-phishing campaigns to exfiltrate sensitive information and interfere in their activities. Since October 3, 2024, Microsoft and the US Department of Justice have seized or taken down more than 180 websites related to that activity. While this coordinated action had a short-term impact on Star Blizzard’s phishing operations, we noted at the time that after this threat actor’s active infrastructure was exposed, they swiftly transitioned to new domains to continue their operations, indicating that the threat actor is highly resilient to operational disruptions.

We assess the threat actor’s shift to compromising WhatsApp accounts is likely in response to the exposure of their TTPs by Microsoft Threat Intelligence and other organizations, including national cybersecurity agencies. While this campaign appears to have wound down at the end of November, we are highlighting the new shift as a sign that the threat actor could be seeking to change its TTPs in order to evade detection.

As part of our continuous monitoring, analysis, and reporting on the threat landscape, we are sharing our information on Star Blizzard’s latest activity to raise awareness of this threat actor’s shift in tradecraft and to educate organizations on how to harden their attack surfaces against this and similar activity. We also directly notify customers who have been targeted or compromised, providing them with the necessary information to help secure their environments.

Targeting WhatsApp account data

Star Blizzard’s new spear-phishing campaign, while novel in that it uses and targets WhatsApp for the first time, exhibits familiar spear-phishing TTPs for Star Blizzard, with the threat actor initiating email contact with their targets, to engage them, before sending them a second message containing a malicious link. The sender address used by the threat actor in this campaign impersonates a US government official, continuing Star Blizzard’s practice of impersonating known political/diplomatic figures, to further ensure target engagement. The initial email sent to targets contains a quick response (QR) code purporting to direct users to join a WhatsApp group on “the latest non-governmental initiatives aimed at supporting Ukraine NGOs.” This code, however, is intentionally broken and will not direct the user towards any valid domain; this is an effort to coax the target recipient into responding.

A close-up of a text
Figure 1. Star Blizzard initial spear-phishing email with broken QR code

When the recipient responds, Star Blizzard sends a second email containing a Safe Links-wrapped t[.]ly shortened link as the alternative link to join the WhatsApp group.

A black text on a white background
Figure 2. Star Blizzard follow-on spear-phishing email with URL link

When this link is followed, the target is redirected to a webpage asking them to scan a QR code to join the group. However, this QR code is actually used by WhatsApp to connect an account to a linked device and/or the WhatsApp Web portal. This means that if the target follows the instructions on this page, the threat actor can gain access to the messages in their WhatsApp account and have the capability to exfiltrate this data using existing browser plugins, which are designed for exporting WhatsApp messages from an account accessed via WhatsApp Web.

Screenshot of the phish attempt displaying a legitimate WhatsApp webpage called To join the US-Ukraine NGOs Group, followed by instructions directing the user to scan the redacted QR code to link their device.
Figure 3. Malicious Star Blizzard phish attempt using WhatsApp linking QR code

While this campaign was limited and appeared to have terminated at the end of November, it nevertheless marked a break in long-standing Star Blizzard TTPs and highlighted the threat actor’s tenacity in continuing spear-phishing campaigns to gain access to sensitive information even in the face of repeated degradations of their operations.

Microsoft Threat Intelligence recommends that all email users belonging to sectors that Star Blizzard typically targets always remain vigilant when dealing with email, especially emails containing links to external resources. These targets are most commonly related to:

  • Government or diplomacy (incumbent and former position holders)
  • Research into defense policy or international relations when related to Russia
  • Assistance to Ukraine related to the ongoing conflict with Russia

When in doubt, contact the person you think is sending the email using a known and previously used email address to verify that the email was indeed sent by them.

Mitigations

To harden networks against the Star Blizzard activity listed above, defenders can implement the following:

  • Implement Microsoft Defender for Endpoint on Android and iOS, which includes anti-phishing capabilities that also apply to QR code phishing attacks, blocking phishing sites from being accessed. 
  • Enable network protection in Microsoft Defender for Endpoint
  • Ensure that tamper protection is enabled in Microsoft Dender for Endpoint
  • Run endpoint detection and response in block mode so that Microsoft Defender for Endpoint can block malicious artifacts, even when your non-Microsoft antivirus does not detect the threat or when Microsoft Defender Antivirus is running in passive mode.
  • Configure investigation and remediation in full automated mode to let Microsoft Defender for Endpoint take immediate action on alerts to resolve breaches, significantly reducing alert volume.
  • Turn on PUA protection in block mode in Microsoft Defender Antivirus
  • Turn on cloud-delivered protection in Microsoft Defender Antivirus or the equivalent for your antivirus product to cover rapidly evolving attacker tools and techniques.
  • Turn on Microsoft Defender Antivirus real-time protection.
  • Encourage users to use Microsoft Edge and other web browsers that support SmartScreen, which identifies and blocks malicious websites, including phishing sites, scam sites, and sites that host malware.
  • Turn on Safe Links and Safe Attachments for Office 365.
  • Use the Attack Simulator in Microsoft Defender for Office 365 to run realistic, yet safe, simulated phishing and password attack campaigns. Utilize the QR code payload in attack simulation training scenarios to mirror Star Blizzard’s and other threat actor’s QR code spear-phishing techniques.

Microsoft Defender XDR detections

Microsoft Defender XDR customers can refer to the list of applicable detections below. Microsoft Defender XDR coordinates detection, prevention, investigation, and response across endpoints, identities, email, apps to provide integrated protection against attacks like the threat discussed in this blog.

Customers with provisioned access can also use Microsoft Security Copilot in Microsoft Defender to investigate and respond to incidents, hunt for threats, and protect their organization with relevant threat intelligence.

Microsoft Defender for Endpoint

The following alerts might indicate threat activity associated with this threat. These alerts, however, can be triggered by unrelated threat activity and are not monitored in the status cards provided with this report.

  • Star Blizzard activity group

Hunting queries

Microsoft Defender XDR

Surface events that may have communicated with the Star Blizzard C2s

let domainList = dynamic(["civilstructgeo.org", "aerofluidthermo.org"]);
union
(
    DnsEvents
    | where QueryType has_any(domainList) or Name has_any(domainList)
    | project TimeGenerated, Domain = QueryType, SourceTable = "DnsEvents"
),
(
    IdentityQueryEvents
    | where QueryTarget has_any(domainList)
    | project Timestamp, Domain = QueryTarget, SourceTable = "IdentityQueryEvents"
),
(
    DeviceNetworkEvents
    | where RemoteUrl has_any(domainList)
    | project Timestamp, Domain = RemoteUrl, SourceTable = "DeviceNetworkEvents"
),
(
    DeviceNetworkInfo
    | extend DnsAddresses = parse_json(DnsAddresses), ConnectedNetworks = parse_json(ConnectedNetworks)
    | mv-expand DnsAddresses, ConnectedNetworks
    | where DnsAddresses has_any(domainList) or ConnectedNetworks.Name has_any(domainList)
    | project Timestamp, Domain = coalesce(DnsAddresses, ConnectedNetworks.Name), SourceTable = "DeviceNetworkInfo"
),
(
    VMConnection
    | extend RemoteDnsQuestions = parse_json(RemoteDnsQuestions), RemoteDnsCanonicalNames = parse_json(RemoteDnsCanonicalNames)
    | mv-expand RemoteDnsQuestions, RemoteDnsCanonicalNames
    | where RemoteDnsQuestions has_any(domainList) or RemoteDnsCanonicalNames has_any(domainList)
    | project TimeGenerated, Domain = coalesce(RemoteDnsQuestions, RemoteDnsCanonicalNames), SourceTable = "VMConnection"
),
(
    W3CIISLog
    | where csHost has_any(domainList) or csReferer has_any(domainList)
    | project TimeGenerated, Domain = coalesce(csHost, csReferer), SourceTable = "W3CIISLog"
),
(
    EmailUrlInfo
    | where UrlDomain has_any(domainList)
    | project Timestamp, Domain = UrlDomain, SourceTable = "EmailUrlInfo"
),
(
    UrlClickEvents
    | where Url has_any(domainList)
    | project Timestamp, Domain = Url, SourceTable = "UrlClickEvents"
)
| order by TimeGenerated desc

Microsoft Sentinel

Microsoft Sentinel customers can use the TI Mapping analytics (a series of analytics all prefixed with ‘TI map’) to automatically match the malicious domain indicators mentioned in this blog post with data in their workspace. If the TI Map analytics are not currently deployed, customers can install the Threat Intelligence solution from the Microsoft Sentinel Content Hub to have the analytics rule deployed in their Sentinel workspace.

While the below queries are not linked to any specific threat actor, they are effective in detecting potential phishing attempts. Implementing these queries can help you stay vigilant and safeguard your organization from phishing attacks

Microsoft Security Copilot

Security Copilot customers can use the standalone experience to create their own prompts or run the following pre-built promptbooks to automate incident response or investigation tasks related to this threat:

  • Incident investigation
  • Microsoft User analysis
  • Threat actor profile
  • Threat Intelligence 360 report based on MDTI article

Note that some promptbooks require access to plugins for Microsoft products such as Microsoft Defender XDR or Microsoft Sentinel.

Threat intelligence reports

Microsoft customers can use the following reports in Microsoft products to get the most up-to-date information about the threat actor, malicious activity, and techniques discussed in this blog. These reports provide the intelligence, protection information, and recommended actions to prevent, mitigate, or respond to associated threats found in customer environments.

Microsoft Defender Threat Intelligence

Microsoft Security Copilot customers can also use the Microsoft Security Copilot integration in Microsoft Defender Threat Intelligence, either in the Security Copilot standalone portal or in the embedded experience in the Microsoft Defender portal to get more information about this threat actor.

Indicators of compromise

IndicatorTypeLast seen
civilstructgeo[.]orgDomainOctober 2024
aerofluidthermo[.]orgDomainOctober 2024

References

Learn more

For further information on the threats detailed in this blog post, refer to these additional Microsoft blogs:

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on LinkedIn at https://www.linkedin.com/showcase/microsoft-threat-intelligence, and on X (formerly Twitter) at https://twitter.com/MsftSecIntel.

To hear stories and insights from the Microsoft Threat Intelligence community about the ever-evolving threat landscape, listen to the Microsoft Threat Intelligence podcast: https://thecyberwire.com/podcasts/microsoft-threat-intelligence.

The post New Star Blizzard spear-phishing campaign targets WhatsApp accounts appeared first on Microsoft Security Blog.

]]>
Frequent freeloader part II: Russian actor Secret Blizzard using tools of other groups to attack Ukraine http://approjects.co.za/?big=en-us/security/blog/2024/12/11/frequent-freeloader-part-ii-russian-actor-secret-blizzard-using-tools-of-other-groups-to-attack-ukraine/ Wed, 11 Dec 2024 17:00:00 +0000 Since January 2024, Microsoft has observed Secret Blizzard using the tools or infrastructure of other threat groups to attack targets in Ukraine and download its custom backdoors Tavdig and KazuarV2.

The post Frequent freeloader part II: Russian actor Secret Blizzard using tools of other groups to attack Ukraine appeared first on Microsoft Security Blog.

]]>
After co-opting the tools and infrastructure of another nation-state threat actor to facilitate espionage activities, as detailed in our last blog, Russian nation-state actor Secret Blizzard used those tools and infrastructure to compromise targets in Ukraine. Microsoft Threat Intelligence has observed that these campaigns consistently led to the download of Secret Blizzard’s custom malware, with the Tavdig backdoor creating the foothold to install their KazuarV2 backdoor.

Between March and April 2024, Microsoft Threat Intelligence observed Secret Blizzard using the Amadey bot malware relating to cybercriminal activity that Microsoft tracks as Storm-1919 to download its backdoors to specifically selected target devices associated with the Ukrainian military. This was at least the second time since 2022 that Secret Blizzard has used a cybercrime campaign to facilitate a foothold for its own malware in Ukraine. Microsoft also assesses that in January 2024, Secret Blizzard used the backdoor of Storm-1837, a Russia-based threat actor that targets Ukrainian military drone pilots, to download the Tavdig and KazuarV2 backdoors on a target device in Ukraine.

Commandeering other threat actors’ access highlights Secret Blizzard’s approach to diversifying its attack vectors, including using strategic web compromises (watering holes) and adversary-in-the-middle (AiTM) campaigns likely facilitated via legally mandated intercept systems in Russia such as the “System for Operative Investigative Activities” (SORM). More commonly, Secret Blizzard uses spear phishing as its initial attack vector, then server-side and edge device compromises to facilitate further lateral movement within a network of interest.

As previously detailed, Secret Blizzard is known for targeting a wide array of sectors, but most prominently ministries of foreign affairs, embassies, government offices, defense departments, and defense-related companies worldwide. Secret Blizzard focuses on gaining long-term access to systems for intelligence collection, often seeking out advanced research and information of political importance, using extensive resources such as multiple backdoors. The United States Cybersecurity and Infrastructure Security Agency (CISA) has attributed Secret Blizzard to Center 16 of Russia’s Federal Security Service (FSB). Secret Blizzard overlaps with the threat actor tracked by other security vendors as Turla, Waterbug, Venomous Bear, Snake, Turla Team, and Turla APT Group.

Microsoft tracks Secret Blizzard campaigns and, when we are able, directly notifies customers who have been targeted or compromised, providing them with the necessary information to help secure their environments. As part of our continuous monitoring, analysis, and reporting on the threat landscape, we are sharing our research on Secret Blizzard’s activity to raise awareness of this threat actor’s tradecraft and to educate organizations on how to harden their attack surfaces against this and similar activity. In addition, we highlight that while Secret Blizzard’s use of infrastructure and access by other threat actors is unusual, it is not unique, and therefore organizations that have been compromised by one threat actor may also find themselves compromised by another through the initial intrusion.

Amadey bot use and post-compromise activities

Between March and April 2024, Microsoft observed Secret Blizzard likely commandeering Amadey bots to ultimately deploy their custom Tavdig backdoor. Microsoft tracks some cybercriminal activity associated with Amadey bots as Storm-1919. Storm-1919’s post-infection goal is most often to deploy XMRIG cryptocurrency miners onto victim devices. Amadey bots have been deployed by Secret Blizzard and other threat actors comprising Storm-1919 to numerous devices around the world during 2024.

Microsoft assesses that Secret Blizzard either used the Amadey malware as a service (MaaS) or accessed the Amadey command-and-control (C2) panels surreptitiously to download a PowerShell dropper on target devices. The PowerShell dropper contained a Base64-encoded Amadey payload appended by code that invoked a request to Secret Blizzard C2 infrastructure.

Screenshot of code depicting the Amadey payload calling back to the Secret Blizzard C2 infrastructure
Figure 1. Amadey payload calling back to Secret Blizzard C2 infrastructure

The Amadey instance was version 4.18, but generally had the same functionality as the Amadey bot described in a Splunk blog from July 2023 analyzing version 3.83.

The Amadey sample gathered a significant amount of information about the victim system, including the administrator status and device name from the registry, and checked for installed antivirus software by seeing if it had a folder in C:\ProgramData. Numbers were recorded for each software found and likely sent back to the C2:

  • Avast Software
    • Avira
    • Kaspersky Lab
    • ESET
    • Panda Security
    • Doctor Web
    • AVG
    • 360TotalSecurity
    • Bitdefender
    • Norton
    • Sophos
    • Comodo

The retrieved information was gathered from the system to be encoded into the communication sent to the C2 at http://vitantgroup[.]com/xmlrpc.php. The Amadey bot then attempted to download two plugins from the C2 server:

  • hxxp://vitantgroup[.]com/Plugins/cred64.dll
  • hxxp://vitantgroup[.]com/Plugins/clip64.dll

Microsoft did not observe the two DLLs on the devices accessed by Secret Blizzard, but it is likely that they performed the same role as in other similar Amadey bots—to collect clipboard data and browser credentials. The need to encode the PowerShell dropper with a separate C2 URL controlled by Secret Blizzard could indicate that Secret Blizzard was not directly in control of the C2 mechanism used by the Amadey bot.

Subsequently, Microsoft observed Secret Blizzard downloading their custom reconnaissance or survey tool. This tool was selectively deployed to devices of further interest by the threat actor—for example, devices egressing from STARLINK IP addresses, a common signature of Ukrainian front-line military devices. The survey tool consisted of an executable that decrypted a batch script or cmdlets at runtime using what appears to be a custom RC4 algorithm. One of the batch scripts invoked the following command:

Screenshot of code depicting the batch script command
Figure 2. Batch script command

The batch script collected a survey of the victim device, including the directory tree, system information, active sessions, IPv4 route table, SMB shares, enabled security groups, and time settings. This information was encrypted using the same RC4 function and transmitted to the previously referenced Secret Blizzard C2 server at hxxps://citactica[.]com/wp-content/wp-login.php.

In another use of the survey tool observed by Microsoft Threat Intelligence, the executable simply decrypted the cmdlet dir “%programdata%\Microsoft\Windows Defender\Support. The %programdata%\Microsoft\Windows Defender\Support folder contains various Microsoft Defender logs, such as entries of detected malicious files.

Microsoft assesses that this cmdlet was invoked to determine if Microsoft Defender was enabled and whether previous Amadey activity had been flagged by the engine. Since several of the targeted devices observed by Microsoft had Microsoft Defender disabled during initial infection, the Secret Blizzard implants were only observed by Microsoft weeks or months after initial malware deployment.

Microsoft assesses that Secret Blizzard generally used the survey tool to determine if a victim device was of further interest, in which case it would deploy a PowerShell dropper containing the Tavdig backdoor payload (rastls.dll) and a legitimate Symantec binary with the name (kavp.exe), which is susceptible to DLL-sideloading.  The C2 configuration for Tavdig was:

  • hxxps://icw2016.coachfederation[.]cz/wp-includeshttps://www.microsoft.com/images/wp/
  • hxxps://hospitalvilleroy[.]com[.]br/wp-includes/fonts/icons/

On several of the victim devices, the Tavdig loader was deployed using an executable named procmap.exe, which used the Microsoft Macro Assembler (MASM) compiler (QEditor). Microsoft assesses that procmap.exe was used to compile and run malicious ASM files on victim devices within Ukraine in March 2024, which then invoked a PowerShell script that subsequently loaded the Amadey bots and the Tavdig backdoor.

Secret Blizzard then used the Tavdig backdoor—loaded into kavp.exe—to conduct further reconnaissance on the device, including user info, netstat, and installed patches. Secret Blizzard also used Tavdig to import a registry file into the registry of the victim device, which likely installed the persistence mechanism and payload for the KazuarV2 backdoor.

Diagram depicting an example of how Amadey bots were used to load the Tavdig backdoor and KazuarV2 backdoor.

Figure 3. Example of how Amadey bots were used to load the Tavdig backdoor

The KazuarV2 payload was often injected into a browser process such as explorer.exe or opera.exe to facilitate command and control with compromised web servers hosting the Secret Blizzard relay and encryption module (index.php). This module facilitated encryption and onward transmission of command output and exfiltrated data from the affected device to the next-level Secret Blizzard infrastructure. 

Storm-1837 PowerShell backdoor use

Microsoft has observed Storm-1837 (overlaps with activity tracked by other security providers as Flying Yeti and UAC-0149) targeting devices belonging to the military of Ukraine since December 2023. Storm-1837 is a Russia-based threat actor that has focused on devices used by Ukrainian drone operators. Storm-1837 uses a range of PowerShell backdoors including the backdoor that the Computer Emergency Response Team of Ukraine (CERT-UA) has named Cookbox as well as an Android backdoor impersonating a legitimate system used for AI processing called “Griselda”, which according to CERT-UA is based on the Hydra Android banking malware and facilitates the collection of session data (HTTP cookies), contacts, and keylogging. In May 2024, Cloudflare detailed a Storm-1837 espionage phishing campaign against Ukrainian military devices for which Storm-1837 used both GitHub and Cloudflare for staging and C2.

In January 2024, Microsoft observed a military-related device in Ukraine compromised by a Storm-1837 backdoor configured to use the Telegram API to launch a cmdlet with credentials (supplied as parameters) for an account on the file-sharing platform Mega. The cmdlet appeared to have facilitated remote connections to the account at Mega and likely invoked the download of commands or files for launch on the target device. When the Storm-1837 PowerShell backdoor launched, Microsoft noted a PowerShell dropper deployed to the device. The dropper was very similar to the one observed during the use of Amadey bots and contained two base64 encoded files containing the previously referenced Tavdig backdoor payload (rastls.dll) and the Symantec binary (kavp.exe).

As with the Amadey bot attack chain, Secret Blizzard used the Tavdig backdoor loaded into kavp.exe to conduct initial reconnaissance on the device. Secret Blizzard then used Tavdig to import a registry file, which was used to install and provide persistence for the KazuarV2 backdoor, which was subsequently observed launching on the affected device.

Although Microsoft did not directly observe the Storm-1837 PowerShell backdoor downloading the Tavdig loader, based on the temporal proximity between the execution of the Storm-1837 backdoor and the observation of the PowerShell dropper, Microsoft assesses that it is likely that the Storm-1837 backdoor was used by Secret Blizzard to deploy the Tavdig loader.

Summary assessments

Microsoft Threat Intelligence is still investigating how Secret Blizzard gained control of the Storm-1837 backdoor or Amadey bots to download its own tools onto devices in Ukraine. It is possible, for example, that Secret Blizzard operators could have purchased the use of Amadey bots, or it may have surreptitiously commandeered a part of the Amadey attack chain.

Regardless of the means, Microsoft Threat Intelligence assesses that Secret Blizzard’s pursuit of footholds provided by or stolen from other threat actors highlights this threat actor’s prioritization of accessing military devices in Ukraine. During its operations, Secret Blizzard has used an RC4 encrypted executable to decrypt various survey cmdlets and scripts, a method Microsoft assesses Secret Blizzard is likely to use beyond the immediate campaign discussed here.

Secret Blizzard deployed tools to these (non-domain-joined) devices that are encoded for espionage against large domain-joined environments. However, this threat actor has also built new functionality into them to make them more relevant for the espionage specifically conducted against Ukrainian military devices. In addition, Microsoft assesses Secret Blizzard has likely also attempted to use these footholds to tunnel and escalate toward strategic access at the Ministry level.

When parts one and two of this blog series are taken together, it indicates that Secret Blizzard has been using footholds from third parties—either by surreptitiously stealing or purchasing access—as a specific and deliberate method to establish footholds of espionage value. Nevertheless, Microsoft assesses that while this approach has some benefits that could lead more threat adversaries to use it, it is of less use against hardened networks, where good endpoint and network defenses enable the detection of activities of multiple threat adversaries for remediation.

Mitigations

To harden networks against the Secret Blizzard activity listed above, defenders can implement the following:

Strengthen Microsoft Defender for Endpoint configuration

Strengthen Microsoft Defender Antivirus configuration

Strengthen operating environment configuration

Microsoft Defender XDR detections

Microsoft Defender Antivirus

Microsoft Defender Antivirus detects this threat as the following malware:

  • Trojan:Win32/Tavdig.Crypt
  • Trojan:JS/Kazuar.A

Microsoft Defender Antivirus detects additional threat components that may be related as the following malware:

  • Trojan:Win32/Amadey
  • Trojan:MSIL/Amadey
  • TrojanDownloader:Win32/Amadey

Microsoft Defender for Endpoint

The following alerts might also indicate threat activity associated with this threat. These alerts, however, can be triggered by unrelated threat activity and are not monitored in the status cards provided with this report.

  • Secret Blizzard Actor activity detected

Hunting queries

Microsoft Defender XDR

Surface instances of the Secret Blizzard indicators of compromise file hashes

let fileHashes = dynamic(["Ee8ef58f3bf0dab066eb608cb0f167b1585e166bf4730858961c192860ceffe9", 
"d26ac1a90f3b3f9e11491f789e55abe5b7d360df77c91a597e775f6db49902ea", 
"d7e528b55b2eeb6786509664a70f641f14d0c13ceec539737eef26857355536e", 
"dfdc0318f3dc5ba3f960b1f338b638cd9645856d2a2af8aa33ea0f9979a9ca4c", 
"ced8891ea8d87005de989f25f0f94634d1fc70ebb37302cf21aa0c0b0e13350f", 
"Ee8ef58f3bf0dab066eb608cb0f167b1585e166bf4730858961c192860ceffe9"]);
union
(
   DeviceFileEvents
   | where SHA256 in (fileHashes)
   | project Timestamp, FileHash = SHA256, SourceTable = "DeviceFileEvents"
),
(
   DeviceEvents
   | where SHA256 in (fileHashes)
   | project Timestamp, FileHash = SHA256, SourceTable = "DeviceEvents"
),
(
   DeviceImageLoadEvents
   | where SHA256 in (fileHashes)
   | project Timestamp, FileHash = SHA256, SourceTable = "DeviceImageLoadEvents"
),
(
   DeviceProcessEvents
   | where SHA256 in (fileHashes)
   | project Timestamp, FileHash = SHA256, SourceTable = "DeviceProcessEvents"
)
| order by Timestamp desc

Surface instances of the Secret Blizzard indicators of compromise C2s.

let domainList = dynamic(["citactica.com", "icw2016.coachfederation.cz", "hospitalvilleroy.com.br", "vitantgroup.com", "brauche-it.de", "okesense.oketheme.com", "coworkingdeamicis.com", "plagnol-charpentier.fr"]);
union
(
    DnsEvents
    | where QueryType has_any(domainList) or Name has_any(domainList)
    | project TimeGenerated, Domain = QueryType, SourceTable = "DnsEvents"
),
(
    IdentityQueryEvents
    | where QueryTarget has_any(domainList)
    | project Timestamp, Domain = QueryTarget, SourceTable = "IdentityQueryEvents"
),
(
    DeviceNetworkEvents
    | where RemoteUrl has_any(domainList)
    | project Timestamp, Domain = RemoteUrl, SourceTable = "DeviceNetworkEvents"
),
(
    DeviceNetworkInfo
    | extend DnsAddresses = parse_json(DnsAddresses), ConnectedNetworks = parse_json(ConnectedNetworks)
    | mv-expand DnsAddresses, ConnectedNetworks
    | where DnsAddresses has_any(domainList) or ConnectedNetworks.Name has_any(domainList)
    | project Timestamp, Domain = coalesce(DnsAddresses, ConnectedNetworks.Name), SourceTable = "DeviceNetworkInfo"
),
(
    VMConnection
    | extend RemoteDnsQuestions = parse_json(RemoteDnsQuestions), RemoteDnsCanonicalNames = parse_json(RemoteDnsCanonicalNames)
    | mv-expand RemoteDnsQuestions, RemoteDnsCanonicalNames
    | where RemoteDnsQuestions has_any(domainList) or RemoteDnsCanonicalNames has_any(domainList)
    | project TimeGenerated, Domain = coalesce(RemoteDnsQuestions, RemoteDnsCanonicalNames), SourceTable = "VMConnection"
),
(
    W3CIISLog
    | where csHost has_any(domainList) or csReferer has_any(domainList)
    | project TimeGenerated, Domain = coalesce(csHost, csReferer), SourceTable = "W3CIISLog"
),
(
    EmailUrlInfo
    | where UrlDomain has_any(domainList)
    | project Timestamp, Domain = UrlDomain, SourceTable = "EmailUrlInfo"
),
(
    UrlClickEvents
    | where Url has_any(domainList)
    | project Timestamp, Domain = Url, SourceTable = "UrlClickEvents"
)
| order by TimeGenerated desc

Additional hunting for likely malicious PowerShell commands queries can be found in this repository.

Look for PowerShell execution events that might involve a download

// Finds PowerShell execution events that could involve a download.
DeviceProcessEvents
| where Timestamp > ago(7d)
| where FileName in~ ("powershell.exe", "powershell_ise.exe")
| where ProcessCommandLine has "Net.WebClient"
or ProcessCommandLine has "DownloadFile"
or ProcessCommandLine has "Invoke-WebRequest"
or ProcessCommandLine has "Invoke-Shellcode"
or ProcessCommandLine has "http"
or ProcessCommandLine has "IEX"
or ProcessCommandLine has "Start-BitsTransfer"
or ProcessCommandLine has "mpcmdrun.exe"
| project Timestamp, DeviceName, InitiatingProcessFileName, FileName, ProcessCommandLine

Look for encoded PowerShell execution events

// Detect Encoded PowerShell
DeviceProcessEvents
| where ProcessCommandLine matches regex @'(\s+-((?i)encod?e?d?c?o?m?m?a?n?d?|e|en|enc|ec)\s).*([A-Za-z0-9+/]{50,}[=]{0,2})'
| extend DecodedCommand = replace(@'\x00','', base64_decode_tostring(extract("[A-Za-z0-9+/]{50,}[=]{0,2}",0 , ProcessCommandLine)))

Microsoft Sentinel

Look for encoded PowerShell

id: f58a7f64-acd3-4cf6-ab6d-be76130cf251
name: Detect Encoded Powershell
description: |	
This query will detect encoded Powershell based on the parameters passed during process creation. This query will also work if the PowerShell executable is renamed or tampered with since detection is based solely on a regex of the launch string.
requiredDataConnectors:
- connectorId: MicrosoftThreatProtection
dataTypes:
- DeviceProcessEvents
tactics:
- Execution
query: |
DeviceProcessEvents
| where ProcessCommandLine matches regex @'(\s+-((?i)encod?e?d?c?o?m?m?a?n?d?|e|en|enc|ec)\s).*([A-Za-z0-9+/]{50,}[=]{0,2})'
| extend DecodedCommand = replace(@'\x00','', base64_decode_tostring(extract("[A-Za-z0-9+/]{50,}[=]{0,2}",0 , ProcessCommandLine)))

Look for PowerShell downloads

id: c34d1d0e-1cf4-45d0-b628-a2cfde329182
name: PowerShell downloads
description: |
Finds PowerShell execution events that could involve a download.
requiredDataConnectors:
- connectorId: MicrosoftThreatProtection
dataTypes:
- DeviceProcessEvents
query: |
DeviceProcessEvents
| where Timestamp > ago(7d)
| where FileName in~ ("powershell.exe", "powershell_ise.exe")
| where ProcessCommandLine has "Net.WebClient"
or ProcessCommandLine has "DownloadFile"
or ProcessCommandLine has "Invoke-WebRequest"
or ProcessCommandLine has "Invoke-Shellcode"
or ProcessCommandLine has "http"
or ProcessCommandLine has "IEX"
or ProcessCommandLine has "Start-BitsTransfer"
or ProcessCommandLine has "mpcmdrun.exe"
| project Timestamp, DeviceName, InitiatingProcessFileName, FileName, ProcessCommandLine

Threat intelligence reports

Microsoft customers can use the following reports in Microsoft products to get the most up-to-date information about the threat actor, malicious activity, and techniques discussed in this blog. These reports provide the intelligence, protection information, and recommended actions to prevent, mitigate, or respond to associated threats found in customer environments. Microsoft Security Copilot customers can also use the Microsoft Security Copilot integration in Microsoft Defender Threat Intelligence either in the Security Copilot standalone portal or in the embedded experience in the Microsoft Defender portal, to get more information about this threat actor.

Microsoft Defender Threat Intelligence

IndicatorTypeAssociationLast seen
hxxps://citactica[.]com/wp-content/wp-login.phpC2 domain Survey Tool and Amadey dropperSecret BlizzardApril 2024
a56703e72f79b4ec72b97c53fbd8426eb6515e3645cb02e7fc99aaaea515273eTavdig payload (rastls.dll)Secret BlizzardApril 2024
hxxps://icw2016.coachfederation[.]cz/wp-includeshttps://www.microsoft.com/images/wp/Tavdig C2 domainSecret BlizzardApril 2024  
hxxps://hospitalvilleroy[.]com[.]br/wp-includes/fonts/icons/Tavdig C2 domainSecret BlizzardApril 2024
f9ebf6aeb3f0fb0c29bd8f3d652476cd1fe8bd9a0c11cb15c43de33bbce0bf68Executable susceptible to DLL-sideload (kavp.exe)Secret BlizzardJan-April 2024
d26ac1a90f3b3f9e11491f789e55abe5b7d360df77c91a597e775f6db49902ea Survey tool (ddra.exe)Secret BlizzardApril 2024
d7e528b55b2eeb6786509664a70f641f14d0c13ceec539737eef26857355536e PowerShell dropper for Amadey bot (nnas.ps1)Secret BlizzardMarch 2024
hxxps://brauche-it[.]de/wp-includes/blocks/blocksu9ky0oKazuarV2 C2Secret BlizzardJune 2024
hxxps://okesense.oketheme[.]com/wp-includes/sodium_compat/sodium_compatT4FF1aKazuarV2 C2  Secret BlizzardJune 2024  
 hxxps://coworkingdeamicis[.]com/wp-includes/Text/TextYpRm9l  KazuarV2 C2  Secret Blizzard  June 2024  
hxxps://plagnol-charpentier[.]fr/wp-includes/random_compat/random_compata0zW7QKazuarV2 C2  Secret Blizzard  June 2024  
dfdc0318f3dc5ba3f960b1f338b638cd9645856d2a2af8aa33ea0f9979a9ca4c Amadey bot (av.exe/ dctooux.exe)Storm-1919March 2024
ced8891ea8d87005de989f25f0f94634d1fc70ebb37302cf21aa0c0b0e13350f Amadey bot (dctooux.exe)Storm-1919March 2024
ee8ef58f3bf0dab066eb608cb0f167b1585e166bf4730858961c192860ceffe9MASM32 utility (procmap.exe)Storm-1919March 2024
hxxp://vitantgroup[.]com/xmlrpc.phpAmadey C2Storm-1919March 2024

Indicators of compromise

References

Learn more

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on LinkedIn at https://www.linkedin.com/showcase/microsoft-threat-intelligence, and on X (formerly Twitter) at https://twitter.com/MsftSecIntel.

To hear stories and insights from the Microsoft Threat Intelligence community about the ever-evolving threat landscape, listen to the Microsoft Threat Intelligence podcast: https://thecyberwire.com/podcasts/microsoft-threat-intelligence.

The post Frequent freeloader part II: Russian actor Secret Blizzard using tools of other groups to attack Ukraine appeared first on Microsoft Security Blog.

]]>
Frequent freeloader part I: Secret Blizzard compromising Storm-0156 infrastructure for espionage http://approjects.co.za/?big=en-us/security/blog/2024/12/04/frequent-freeloader-part-i-secret-blizzard-compromising-storm-0156-infrastructure-for-espionage/ Wed, 04 Dec 2024 17:00:00 +0000 Microsoft has observed Secret Blizzard compromising the infrastructure and backdoors of the Pakistan-based threat actor we track as Storm-0156 for espionage against the Afghanistan government and Indian Army targets.

The post Frequent freeloader part I: Secret Blizzard compromising Storm-0156 infrastructure for espionage appeared first on Microsoft Security Blog.

]]>
Based on both Microsoft Threat Intelligence’s findings and those reported by governments and other security vendors, we assess that the Russian nation-state actor tracked as Secret Blizzard has used the tools and infrastructure of at least six other threat actors during the past seven years. They also have actively targeted infrastructure where other threat actors have staged exfiltrated data from victims with the intention of collecting this data for their own espionage program. We assess that Secret Blizzard’s use of other actors’ infrastructure and tools, both state-sponsored and cybercriminal, is exclusively for facilitating espionage operations.

In this first of a two-part blog series, we discuss how Secret Blizzard has used the infrastructure of the Pakistan-based threat activity cluster we call Storm-0156 — which overlaps with the threat actor known as SideCopy, Transparent Tribe, and APT36 — to install backdoors and collect intelligence on targets of interest in South Asia. Microsoft Threat Intelligence partnered with Black Lotus Labs, the threat intelligence arm of Lumen Technologies, to confirm that Secret Blizzard command-and-control (C2) traffic emanated from Storm-0156 infrastructure, including infrastructure used by Storm-0156 to collate exfiltrated data from campaigns in Afghanistan and India. We thank the Black Lotus Team for recognizing the impact of this threat and collaborating on investigative efforts. In the second blog, Microsoft Threat Intelligence will be detailing how Secret Blizzard has used Amadey bots and the PowerShell backdoor of two other threat actors to deploy the Tavdig backdoor and then use that foothold to install their KazuarV2 backdoor on target devices in Ukraine.

Microsoft Threat Intelligence tracks Secret Blizzard campaigns and, when we are able, directly notifies customers who have been targeted or compromised, providing them with the necessary information to help secure their environments. As part of our continuous monitoring, analysis, and reporting on the threat landscape, we are sharing our research on Secret Blizzard’s activity to raise awareness of this threat actor’s tradecraft and to educate organizations on how to harden their attack surfaces against this and similar activity. In addition, we highlight that, while Secret Blizzard’s use of infrastructure and access by other threat actors is unusual, it is not unique. Therefore, organizations compromised by one threat actor may also find themselves compromised by another through the initial intrusion.

Who is Secret Blizzard?

The United States Cybersecurity and Infrastructure Security Agency (CISA) has attributed Secret Blizzard to Center 16 of Russia’s Federal Security Service (FSB), which is one of Russia’s Signals Intelligence and Computer Network Operations (CNO) services responsible for intercepting and decrypting electronic data as well as the technical penetration of foreign intelligence targets. Secret Blizzard overlaps with the threat actor tracked by other security vendors as Turla, Waterbug, Venomous Bear, Snake, Turla Team, and Turla APT Group.

Secret Blizzard is known for targeting a wide array of verticals, but most prominently ministries of foreign affairs, embassies, government offices, defense departments, and defense-related companies worldwide. Secret Blizzard focuses on gaining long-term access to systems for intelligence collection using extensive resources such as multiple backdoors, including some with peer-to-peer functionality and C2 communication channels. During intrusions, the threat actor collects and exfiltrates documents, PDFs, and email content. In general, Secret Blizzard seeks out information of political importance with a particular interest in advanced research that might impact international political issues. Campaigns where Secret Blizzard has used the tools or compromised infrastructure of other threat adversaries that have been publicly reported by other security vendors include:

  • Accessing tools and infrastructure of Iranian state-sponsored threat actor Hazel Sandstorm (also called OilRig, APT-34 and Crambus) in 2017, as reported by Symantec and the US and UK intelligence services
  • Reusing Andromeda malware to deploy the KopiLuwak and QuietCanary backdoors in 2022, as reported by Mandiant.
  • Using the backdoor of the Kazakhstan-based threat actor tracked by Microsoft Threat Intelligence as Storm-0473, also called Tomiris, in an attempt to deploy QuietCanary in 2022, as reported by Kaspersky.

While not unique, leveraging the access of other adversaries is a somewhat unusual attack vector for threat actors in general. Secret Blizzard’s use of this technique highlights their approach to diversifying attack vectors, including using strategic web compromises (watering holes) and adversary-in-the-middle (AiTM) campaigns likely facilitated via legally mandated intercept systems in Russia such as the “System for Operative Investigative Activities” (SORM). More commonly, Secret Blizzard uses server-side and edge device compromises as initial attack-vectors to facilitate further lateral movement within a network of interest.

Compromise and post-compromise activities

Since November 2022, Microsoft Threat Intelligence has observed Secret Blizzard compromising the C2 infrastructure of a Pakistan-based espionage cluster that we track as Storm-0156. Secret Blizzard has used Storm-0156’s backdoors to deploy their own backdoors to compromised devices. In addition, Secret Blizzard tools have been deployed to virtual private servers (VPS) staging Storm-0156’s exfiltrated data.

The initial access mechanism used by Secret Blizzard to compromise Storm-0156 infrastructure is currently not known. In some instances, observed by Microsoft Threat Intelligence, Storm-0156 appeared to have used the C2 server for a considerable amount of time, while in other observed incidents Storm-0156 began accessing the VPS when Secret Blizzard deployed tools.

On the VPS used for C2, Storm-0156 operators consistently deploy a tool with the filename ArsenalV2%.exe. This is a server-side C2 tool that Microsoft Threat Intelligence refers to as Arsenal. Arsenal is an executable built on top of the cross-platform application development framework QtFramework, indicating it may also be deployed on operating systems other than Windows. Upon execution, Arsenal listens over a hardcoded port for incoming requests from controlled devices. Once connected, the tool enables threat actors to upload or download files to or from the device on which it is deployed.

When Arsenal is deployed, at least two SQLite3 databases, named ConnectionInfo.db and DownloadPriority.db, are set up. Arsenal uses these databases to store and look up information in different tables, such as:

  • Uploaded files and a distinct username of the uploader
  • Affected device information, including IP address, location, operating system version, and installed antivirus software
  • Network connection events, duration of the session, and timestamps like the disconnect and connect time

Initially, Secret Blizzard deployed a fork of the TinyTurla backdoor to Storm-0156 C2 servers. However, since October 2023, Secret Blizzard predominantly has been using a .NET backdoor that Microsoft Threat Intelligence refers to as TwoDash alongside a clipboard monitoring tool referred to as Statuezy. Shortly after we observed the deployment of these capabilities, our partner Black Lotus Labs observed C2 communication from the Storm-0156 C2 infrastructure to dedicated Secret Blizzard C2s. This privileged position on Storm-0156 C2s has allowed Secret Blizzard to commandeer Storm-0156 backdoors such as CrimsonRAT, which was previously observed in Storm-0156 campaigns in 2023 and earlier, and a Storm-0156 Golang backdoor we refer to as Wainscot.

Storm-0156 extensively uses a renamed version (cridviz.exe, crezly.exe) of the Credential Backup and Restore Wizard, credwiz.exe which is vulnerable to DLL-sideloading, to load malicious payloads using a file name DUser.dll. Secret Blizzard often drops their own malicious payloads into a directory separate from that used by Storm-0156, but also uses credwiz.exe to load their malicious payload in a file called duser.dll. This DLL may contain a simple Meterpreter-like backdoor referred to as MiniPocket or the previously referenced TwoDash .NET backdoor. Secret Blizzard’s use of DLL-sideloading using the same legitimate executable and malicious payloads having similar names to those used by Storm-0156 may indicate Secret Blizzard attempts to masquerade as Storm-0156. Another Search-Order-Hijack used by Secret Blizzard is the deployment of TwoDash into the directory c:\windows\system32 with the filename oci.dll and then using the default Windows installation Distributed Transaction Coordinator, msdtc.exe, to DLL-sideload the malicious payload in oci.dll as described by a Penetration Testing Lab blog published in 2020.

Diagram depicting Secret Blizzard first compromising Storm-0156 C2 infrastructure to deploy either TinyTurla or TwoDash, alongside Statuezy to the server. Second, Secret Blizzard implants are deployed to Storm-0156 C2 servers, and beacon to known Secret Blizzard C2 servers. Secret Blizzard then commandeers Storm-0156 backdoors to deploy TwoDash or Minipocket into existing victim networks, which have been observed within the Afghanistan government and other victim networks. Finally, Secret Blizzard implants and establishes a C2 channel with Secret Blizzard infrastructure, completing deployment.
Figure 1. Secret Blizzard and Storm-0156 chain of compromise

In August 2024, Microsoft observed Secret Blizzard using a CrimsonRAT compromise that Storm-0156 had established in March 2024. Secret Blizzard is assessed to have commandeered the CrimsonRAT backdoor to download and execute Secret Blizzard’s TwoDash backdoor. Additionally, Microsoft observed instances of Secret Blizzard accessing Storm-0156’s CrimsonRAT on target devices in India. One of these CrimsonRAT deployments was configured with a C2 server at Contabo (ur253.duckdns[.]org: 45.14.194[.]253), where Secret Blizzard had deployed the clipboard monitor tool in January, February, and September 2024. Between May and August 2024, Black Lotus Labs confirmed network activity indicating backdoor communication from this same CrimsonRAT C2 to known Secret Blizzard infrastructure.

Secret Blizzard backdoors deployed on Storm-0156 infrastructure

TinyTurla variant

Similar to the TinyTurla backdoor reported by Cisco Talos in 2021, the TinyTurla variant is installed using a batch file and disguises itself as a Windows-based service. The batch file also configures a variety of registry keys used by the malware including Delay (sleep time), Key (public key), and Hosts (C2 addresses).

Screenshot of code depicting the mp.bat file containing configuring parameters for the TinyTurla variant
Figure 2. mp.bat file containing configuring parameters for the TinyTurla variant

While there is not complete feature parity between the TinyTurla variant sample and the sample analyzed by Cisco Talos, there are significant functional and code overlaps.

TwoDash

TwoDash is a custom downloader comprised of two main components: a native Win32/64 PE file and a .NET application. The native binary acts as a loader for the .NET application which it decrypts and executes. The .NET application conducts a basic device survey and sends this information to the configured C2 servers. Finally, it waits for follow-on tasks, which are compiled as additional .NET assemblies/modules.

Statuezy

Statuezy is a custom trojan that monitors and logs data saved to the Windows clipboard. Each time the clipboard is updated with new data, the trojan saves the current timestamp, associated clipboard format (such as CF_TEXT), and the clipboard data itself to a temporary file which we assess is exfiltrated by a separate malware family.

MiniPocket

MiniPocket is a small custom downloader that connects to a hardcoded IP address/port using TCP to retrieve and execute a second-stage binary.

Storm-0156 backdoors used in this campaign

Wainscot

Wainscot is a Golang-based backdoor seen in the wild since at least October 2023. This backdoor can handle various commands from C2, including launching arbitrary commands, uploading and downloading files, and taking screenshots on the target host. Though Microsoft Threat Intelligence has primarily observed this backdoor targeting Windows users, we also have identified public reports of a possible Wainscot variant targeting Linux-based platforms. Interestingly, this Linux variant has far more features than the Windows variant.

CrimsonRAT

CrimsonRAT is a .NET-based backdoor with varied capabilities that has gone through multiple iterations over the years. The most recent variant of CrimsonRAT analyzed by Microsoft Threat Intelligence can gather system information, list running processes, file information, download or upload files, and execute arbitrary commands on target. We also have observed CrimsonRAT dropping additional modules to act as a keylogger on the target host.

Who has been affected by Secret Blizzard’s compromises using Storm-0156 infrastructure?

In Afghanistan, Secret Blizzard generally has used their positions on Storm-0156 C2 servers to deploy backdoors to devices within the extended Afghan government—including the Ministry of Foreign Affairs, the General Directorate of Intelligence (GDI), and foreign consulates of the government of Afghanistan. In each of these cases, we observed the deployment of Storm-0156 backdoors which were subsequently used to download the Secret Blizzard tools to target devices in Afghanistan.

In India, Secret Blizzard generally appears to have avoided direct deployment via Storm-0156 backdoors, instead deploying Secret Blizzard backdoors to C2 servers or Storm-0156 servers hosting data exfiltrated from Indian military and defense-related institutions. We observed only one instance of Secret Blizzard using a Storm-0156 backdoor to deploy the TwoDash backdoor to a target desktop in India. The difference in Secret Blizzard’s approach in Afghanistan and India could reflect political considerations within the Russian leadership, differing geographical areas of responsibility within the FSB, or a collection gap on Microsoft Threat Intelligence’s part.    

Conclusion

The frequency of Secret Blizzard’s operations to co-opt or commandeer the infrastructure or tools of other threat actors suggests that this is an intentional component of Secret Blizzard’s tactics and techniques. Leveraging this type of resource has both advantages and drawbacks. Taking advantage of the campaigns of others allows Secret Blizzard to establish footholds on networks of interest with relatively minimal effort. However, because these initial footholds are established on another threat actor’s targets of interest, the information obtained through this technique may not align entirely with Secret Blizzard’s collection priorities. In addition, if the threat actor that established the initial foothold has poor operational security, this technique might trigger endpoint or network security alerts on the tools deployed by the actor conducting the initial compromise, resulting in unintended exposure of Secret Blizzard activity.

Mitigation and protection guidance

To harden networks against the Secret Blizzard activity listed above, defenders can implement the following:

Strengthen Microsoft Defender for Endpoint configuration

Strengthen Microsoft Defender Antivirus configuration

Strengthen operating environment configuration

Microsoft Defender XDR detections

Microsoft Defender Antivirus 

Microsoft Defender Antivirus detects this threat as the following malware: 

Microsoft Defender for Endpoint

The following Microsoft Defender for Endpoint alerts can indicate associated threat activity:

  • Secret Blizzard Actor activity detected

The following alerts might also indicate threat activity related to this threat. Note, however, these alerts also can be triggered by unrelated threat activity. 

  • An executable file loaded an unexpected DLL file
  • Process loaded suspicious .NET assembly

Threat intelligence reports

Microsoft customers can use the following reports in Microsoft products to get the most up-to-date information about the threat actor, malicious activity, and techniques discussed in this blog. These reports provide the intelligence, protection information, and recommended actions to prevent, mitigate, or respond to associated threats found in customer environments. Microsoft Security Copilot customers can also use the Microsoft Security Copilot integration in Microsoft Defender Threat Intelligence to get more information about this threat actor.

Microsoft Defender Threat Intelligence

Hunting queries  

Microsoft Defender XDR

The following sample queries let you search for a week’s worth of events. To explore up to 30 days’ worth of raw data to inspect events in your network and locate potential PowerShell-related indicators for more than a week, go to the Advanced hunting page > Query tab, select the calendar dropdown menu to update your query to hunt for the Last 30 days.

Storm-0156 compromise-associated malware

Surface events that may have involved Storm-0156 compromise-associated malware.

let fileHashes = dynamic(["e298b83891b192b8a2782e638e7f5601acf13bab2f619215ac68a0b61230a273", "08803510089c8832df3f6db57aded7bfd2d91745e7dd44985d4c9cb9bd5fd1d2", "aba8b59281faa8c1c43a4ca7af075edd3e3516d3cef058a1f43b093177b8f83c", "7c4ef30bd1b5cb690d2603e33264768e3b42752660c79979a5db80816dfb2ad2", "dbbf8108fd14478ae05d3a3a6aabc242bff6af6eb1e93cbead4f5a23c3587ced", "7c7fad6b9ecb1e770693a6c62e0cc4183f602b892823f4a451799376be915912", "e2d033b324450e1cb7575fedfc784e66488e342631f059988a9a2fd6e006d381", "C039ec6622393f9324cacbf8cfaba3b7a41fe6929812ce3bd5d79b0fdedc884a", "59d7ec6ec97c6b958e00a3352d38dd13876fecdb2bb13a8541ab93248edde317"
]);
union
(
   DeviceFileEvents
   | where SHA256 in (fileHashes)
   | project Timestamp, FileHash = SHA256, SourceTable = "DeviceFileEvents"
),
(
   DeviceEvents
   | where SHA256 in (fileHashes)
   | project Timestamp, FileHash = SHA256, SourceTable = "DeviceEvents"
),
(
   DeviceImageLoadEvents
   | where SHA256 in (fileHashes)
   | project Timestamp, FileHash = SHA256, SourceTable = "DeviceImageLoadEvents"
),
(
   DeviceProcessEvents
   | where SHA256 in (fileHashes)
   | project Timestamp, FileHash = SHA256, SourceTable = "DeviceProcessEvents"
)
| order by Timestamp desc

Microsoft Sentinel 

Microsoft Sentinel customers can use the TI Mapping analytics (a series of analytics all prefixed with ‘TI map’) to automatically match the malicious domain indicators mentioned in this blog post with data in their workspace. If the TI Map analytics are not currently deployed, customers can install the Threat Intelligence solution from the Microsoft Sentinel Content Hub to have the analytics rule deployed in their Sentinel workspace.  

Search for file-based IOCs:

let selectedTimestamp = datetime(2024-10-17T00:00:00.0000000Z); 
let fileName = dynamic(["hubstck.exe","auddrv.exe","lustsorelfar.exe","duser.dll","mfmpef.exe","MpSvcS.dll","WinHttpSvc.dll","regsvr.exe"]); 
let FileSHA256 = dynamic(["e298b83891b192b8a2782e638e7f5601acf13bab2f619215ac68a0b61230a273","08803510089c8832df3f6db57aded7bfd2d91745e7dd44985d4c9cb9bd5fd1d2","aba8b59281faa8c1c43a4ca7af075edd3e3516d3cef058a1f43b093177b8f83c","7c4ef30bd1b5cb690d2603e33264768e3b42752660c79979a5db80816dfb2ad2","dbbf8108fd14478ae05d3a3a6aabc242bff6af6eb1e93cbead4f5a23c3587ced","7c7fad6b9ecb1e770693a6c62e0cc4183f602b892823f4a451799376be915912","e2d033b324450e1cb7575fedfc784e66488e342631f059988a9a2fd6e006d381","C039ec6622393f9324cacbf8cfaba3b7a41fe6929812ce3bd5d79b0fdedc884a","59d7ec6ec97c6b958e00a3352d38dd13876fecdb2bb13a8541ab93248edde317"]); 
search in (AlertEvidence,BehaviorEntities,CommonSecurityLog,DeviceBaselineComplianceProfiles,DeviceEvents,DeviceFileEvents,DeviceImageLoadEvents, 
DeviceLogonEvents,DeviceNetworkEvents,DeviceProcessEvents,DeviceRegistryEvents,DeviceFileCertificateInfo,DynamicEventCollection,EmailAttachmentInfo,OfficeActivity,SecurityEvent,ThreatIntelligenceIndicator) 
TimeGenerated between ((selectedTimestamp - 1m) .. (selectedTimestamp + 90d)) // from October 17th runs the search for last 90 days, change the selectedTimestamp or 90d accordingly. 
and  
(FileName in (fileName) or OldFileName in (fileName)  or ProfileName in (fileName)  or InitiatingProcessFileName in (fileName)  or InitiatingProcessParentFileName in (fileName)  
or InitiatingProcessVersionInfoInternalFileName in (fileName)  or InitiatingProcessVersionInfoOriginalFileName in (fileName)  or PreviousFileName in (fileName)  
or ProcessVersionInfoInternalFileName in (fileName) or ProcessVersionInfoOriginalFileName in (fileName) or DestinationFileName in (fileName) or SourceFileName in (fileName)
or ServiceFileName in (fileName) or SHA256 in (FileSHA256)  or InitiatingProcessSHA256 in (FileSHA256))

Search for network IOCs:

let selectedTimestamp = datetime(2024-10-17T00:00:00.0000000Z);
let ip = dynamic(["94.177.198.94","162.213.195.129","46.249.58.201","95.111.229.253","146.70.158.90","143.198.73.108","161.35.192.207","91.234.33.48","154.53.42.194","38.242.207.36",
"167.86.118.69","164.68.108.153","144.91.72.17","130.185.119.198 ","176.57.184.97","173.212.252.2","209.126.11.251","45.14.194.253","37.60.236.186","5.189.183.63","109.123.244.46"]);
let url = dynamic(["connectotels.net","hostelhotels.net",”ur253.duckdns.org”]);
search in (AlertEvidence,BehaviorEntities,CommonSecurityLog,DeviceInfo,DeviceNetworkEvents,DeviceNetworkInfo,DnsEvents,SecurityEvent,VMConnection,WindowsFirewall)
TimeGenerated between ((selectedTimestamp - 1m) .. (selectedTimestamp + 90d)) // from October 17th runs the search for last 90 days, change the above selectedTimestamp or 90d accordingly.
and 
(RemoteIP in (ip) or DestinationIP in (ip) or DeviceCustomIPv6Address1 in (ip) or DeviceCustomIPv6Address2 in (ip) or DeviceCustomIPv6Address3 in (ip) or DeviceCustomIPv6Address4 in (ip) or 
MaliciousIP in (ip) or SourceIP in (ip) or PublicIP in (ip) or LocalIPType in (ip) or RemoteIPType in (ip) or IPAddresses in (ip) or IPv4Dhcp in (ip) or IPv6Dhcp in (ip) or IpAddress in (ip) or 
NASIPv4Address in (ip) or NASIPv6Address in (ip) or RemoteIpAddress in (ip) or RemoteUrl in (url))

Indicators of compromise

Storm-0156 compromise-associated malware

IndicatorTypeAssociationLast seen
e298b83891b192b8a2782e638e7f5601acf13bab2f619215ac68a0b61230a273Wainscot SHA-256 (hubstck.exe)Storm-0156 
08803510089c8832df3f6db57aded7bfd2d91745e7dd44985d4c9cb9bd5fd1d2Wainscot SHA-256 (auddrv.exe)Storm-0156 
aba8b59281faa8c1c43a4ca7af075edd3e3516d3cef058a1f43b093177b8f83cCrimsonRAT SHA-256 (lustsorelfar.exe)Storm-0156 
7c4ef30bd1b5cb690d2603e33264768e3b42752660c79979a5db80816dfb2ad2Minipocket SHA-256 (duser.dll)Secret Blizzard 
dbbf8108fd14478ae05d3a3a6aabc242bff6af6eb1e93cbead4f5a23c3587cedTwoDash backdoor SHA-256 (mfmpef.exe)Secret Blizzard 
7c7fad6b9ecb1e770693a6c62e0cc4183f602b892823f4a451799376be915912TwoDash backdoor SHA-256 (duser.dll)Secret Blizzard 
e2d033b324450e1cb7575fedfc784e66488e342631f059988a9a2fd6e006d381TinyTurla variant SHA-256 (MpSvcS.dl)Secret Blizzard 
C039ec6622393f9324cacbf8cfaba3b7a41fe6929812ce3bd5d79b0fdedc884aTinyTurla variant SHA-256 (WinHttpSvc.dll)Secret Blizzard 
59d7ec6ec97c6b958e00a3352d38dd13876fecdb2bb13a8541ab93248edde317Clipboard monitor SHA-256 (regsvr.exe)Secret Blizzard 
connectotels[.]netTinyTurla C2 domainSecret BlizzardApril 2022
hostelhotels[.]netTinyTurla C2 domainSecret BlizzardFebruary 2023
94.177.198[.]94TinyTurla C2 IP addressSecret BlizzardSeptember2022
162.213.195[.]129TinyTurla C2 IP addressSecret BlizzardFebruary 2023
46.249.58[.]201TinyTurla C2 IP addressSecret BlizzardFebruary 2023
95.111.229[.]253TinyTurla C2 IP addressSecret BlizzardSeptember 2022
146.70.158[.]90MiniPocket and TwoDash C2 IP addressSecret BlizzardMay 2024
143.198.73[.]108TwoDash C2 IP addressSecret BlizzardSeptember2023
161.35.192[.]207TwoDash C2 IP addressSecret BlizzardApril 2024
91.234.33[.]48TwoDash C2 IP addressSecret BlizzardApril 2024
154.53.42[.]194ReverseRAT C2 IP addressCompromised Storm-0156 infrastructureJuly 2024
38.242.207[.]36ReverseRAT C2 IP addressCompromised Storm-0156 infrastructureMay 2023
167.86.118[.]69ReverseRAT C2 IP addressCompromised Storm-0156 infrastructureMay 2023
164.68.108[.]153ReverseRAT C2 IP addressCompromised Storm-0156 infrastructureAugust 2024
144.91.72[.]17Action RAT C2 IP addressCompromised Storm-0156 infrastructureFebruary 2023
130.185.119[.]198Wainscot C2 IP addressCompromised Storm-0156 infrastructureAugust 2024
176.57.184[.]97Wainscot C2 IP addressCompromised Storm-0156 infrastructureSeptember 2024
173.212.252[.]2Wainscot C2 IP addressCompromised Storm-0156 infrastructureAugust 2024
209.126.11[.]251Wainscot C2 IP addressCompromised Storm-0156 infrastructureJune 2024
45.14.194[.]253CrimsonRAT C2 IP addressCompromised Storm-0156 infrastructureSeptember 2024
37.60.236[.]186CrimsonRAT C2 IP addressCompromised Storm-0156 infrastructureAugust 2024
5.189.183[.]63CrimsonRAT C2 IP addressCompromised Storm-0156 infrastructureAugust 2024
109.123.244[.]46C2 Server hosting exfiltrated target dataCompromised Storm-0156 infrastructureAugust 2024

References

Learn more

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on LinkedIn at https://www.linkedin.com/showcase/microsoft-threat-intelligence, and on X (formerly Twitter) at https://twitter.com/MsftSecIntel.

To hear stories and insights from the Microsoft Threat Intelligence community about the ever-evolving threat landscape, listen to the Microsoft Threat Intelligence podcast: https://thecyberwire.com/podcasts/microsoft-threat-intelligence.

The post Frequent freeloader part I: Secret Blizzard compromising Storm-0156 infrastructure for espionage appeared first on Microsoft Security Blog.

]]>
Midnight Blizzard conducts large-scale spear-phishing campaign using RDP files http://approjects.co.za/?big=en-us/security/blog/2024/10/29/midnight-blizzard-conducts-large-scale-spear-phishing-campaign-using-rdp-files/ Tue, 29 Oct 2024 19:00:00 +0000 Since October 22, 2024, Microsoft Threat Intelligence has observed Russian threat actor Midnight Blizzard sending a series of highly targeted spear-phishing emails to individuals in government, academia, defense, non-governmental organizations, and other sectors. This activity is ongoing, and Microsoft will continue to investigate and provide updates as available. Based on our investigation of previous Midnight […]

The post Midnight Blizzard conducts large-scale spear-phishing campaign using RDP files appeared first on Microsoft Security Blog.

]]>
Since October 22, 2024, Microsoft Threat Intelligence has observed Russian threat actor Midnight Blizzard sending a series of highly targeted spear-phishing emails to individuals in government, academia, defense, non-governmental organizations, and other sectors. This activity is ongoing, and Microsoft will continue to investigate and provide updates as available. Based on our investigation of previous Midnight Blizzard spear-phishing campaigns, we assess that the goal of this operation is likely intelligence collection. Microsoft is releasing this blog to notify the public and disrupt this threat actor activity. This blog provides context on these external spear-phishing attempts, which are common attack techniques and do not represent any new compromise of Microsoft.

The spear-phishing emails in this campaign were sent to thousands of targets in over 100 organizations and contained a signed Remote Desktop Protocol (RDP) configuration file that connected to an actor-controlled server. In some of the lures, the actor attempted to add credibility to their malicious messages by impersonating Microsoft employees. The threat actor also referenced other cloud providers in the phishing lures.

While this campaign focuses on many of Midnight Blizzard’s usual targets, the use of a signed RDP configuration file to gain access to the targets’ devices represents a novel access vector for this actor. Overlapping activity has also been reported by the Government Computer Emergency Response Team of Ukraine (CERT-UA) under the designation UAC-0215 and also by Amazon.

Midnight Blizzard is a Russian threat actor attributed by the United States and United Kingdom governments to the Foreign Intelligence Service of the Russian Federation, also known as the SVR. This threat actor is known to primarily target governments, diplomatic entities, non-governmental organizations (NGOs), and IT service providers, primarily in the United States and Europe. Its focus is to collect intelligence through longstanding and dedicated espionage of foreign interests that can be traced to early 2018. Its operations often involve compromise of valid accounts and, in some highly targeted cases, advanced techniques to compromise authentication mechanisms within an organization to expand access and evade detection.

Midnight Blizzard is consistent and persistent in its operational targeting, and its objectives rarely change. It uses diverse initial access methods, including spear phishing, stolen credentials, supply chain attacks, compromise of on-premises environments to laterally move to the cloud, and leveraging service providers’ trust chain to gain access to downstream customers. Midnight Blizzard is known to use the Active Directory Federation Service (AD FS) malware known as FOGGYWEB and MAGICWEB. Midnight Blizzard is identified by peer security vendors as APT29, UNC2452, and Cozy Bear.

As with any observed nation-state actor activity, Microsoft is in the process of directly notifying customers that have been targeted or compromised, providing them with the necessary information to secure their accounts. Strong anti-phishing measures will help to mitigate this threat. As part of our commitment to helping protect against cyber threats, we provide indicators of compromise (IOCs), hunting queries, detection details, and recommendations at the end of this post.

Spear-phishing campaign

On October 22, 2024, Microsoft identified a spear-phishing campaign in which Midnight Blizzard sent phishing emails to thousands of users in over 100 organizations. The emails were highly targeted, using social engineering lures relating to Microsoft, Amazon Web Services (AWS), and the concept of Zero Trust. The emails contained a Remote Desktop Protocol (RDP) configuration file signed with a LetsEncrypt certificate. RDP configuration (.RDP) files summarize automatic settings and resource mappings that are established when a successful connection to an RDP server occurs. These configurations extend features and resources of the local system to a remote server, controlled by the actor.

In this campaign, the malicious .RDP attachment contained several sensitive settings that would lead to significant information exposure. Once the target system was compromised, it connected to the actor-controlled server and bidirectionally mapped the targeted user’s local device’s resources to the server. Resources sent to the server may include, but are not limited to, all logical hard disks, clipboard contents, printers, connected peripheral devices, audio, and authentication features and facilities of the Windows operating system, including smart cards. This access could enable the threat actor to install malware on the target’s local drive(s) and mapped network share(s), particularly in AutoStart folders, or install additional tools such as remote access trojans (RATs) to maintain access when the RDP session is closed. The process of establishing an RDP connection to the actor-controlled system may also expose the credentials of the user signed in to the target system.

A screenshot of the dialog box to allow the malicious remote connection initiated by the threat actor
Figure 1. Malicious remote connection

RDP connection

When the target user opened the .RDP attachment, an RDP connection was established to an actor-controlled system. The configuration of the RDP connection then allowed the actor-controlled system to discover and use information about the target system, including:

  • Files and directories
  • Connected network drives
  • Connected peripherals, including smart cards, printers, and microphones
  • Web authentication using Windows Hello, passkeys, or security keys
  • Clipboard data
  • Point of Service (also known as Point of Sale or POS) devices

Targets

Microsoft has observed this campaign targeting governmental agencies, higher education, defense, and non-governmental organizations in dozens of countries, but particularly in the United Kingdom, Europe, Australia, and Japan. This target set is consistent with other Midnight Blizzard phishing campaigns.

Email infrastructure

Midnight Blizzard sent the phishing emails in this campaign using email addresses belonging to legitimate organizations that were gathered during previous compromises. The domains used are listed in the IOC section below.

Mitigations

Microsoft recommends the following mitigations to reduce the impact of this threat.

Strengthen operating environment configuration

Strengthen endpoint security configuration

If you are using Microsoft Defender for Endpoint take the following steps:

  • Ensure tamper protection is turned on in Microsoft Defender for Endpoint.
  • Turn on network protection in Microsoft Defender for Endpoint.
  • Turn on web protection.
  • Run endpoint detection and response (EDR) in block mode so that Microsoft Defender for Endpoint can help block malicious artifacts, even when your non-Microsoft antivirus does not detect the threat or when Microsoft Defender Antivirus is running in passive mode. EDR in block mode works behind the scenes to help remediate malicious artifacts that are detected post-breach.
  • Configure investigation and remediation in full automated mode to let Microsoft Defender for Endpoint take immediate action on alerts to help resolve breaches, significantly reducing alert volume. 
  • Microsoft Defender XDR customers can turn on the following attack surface reduction rules to help prevent common attack techniques used by threat actors.
    • Block executable content from email client and webmail
    • Block executable files from running unless they meet a prevalence, age, or trusted list criterion

Strengthen antivirus configuration

  • Turn on cloud-delivered protection in Microsoft Defender Antivirus, or the equivalent for your antivirus product, to help cover rapidly evolving attacker tools and techniques. Cloud-based machine learning protections help block a majority of new and unknown variants.
  • Enable Microsoft Defender Antivirus scanning of downloaded files and attachments.
  • Enable Microsoft Defender Antivirus real-time protection.

Strengthen Microsoft Office 365 configuration

  • Turn on Safe Links and Safe Attachments for Office 365.
  • Enable Zero-hour auto purge (ZAP) in Office 365 to help quarantine sent mail in response to newly acquired threat intelligence and retroactively neutralize malicious phishing, spam, or malware messages that have already been delivered to mailboxes.

Strengthen email security configuration

  • Invest in advanced anti-phishing solutions that monitor incoming emails and visited websites. For example, Microsoft Defender for Office 365 merges incident and alert management across email, devices, and identities, centralizing investigations for email-based threats. Organizations can also leverage web browsers that automatically identify and help block malicious websites, including those used in phishing activities.
  • If you are using Microsoft Defender for Office 365, configure it to recheck links on click. Safe Links provides URL scanning and rewriting of inbound email messages in mail flow, and time-of-click verification of URLs and links in email messages, other Microsoft 365 applications such as Teams, and other locations such as SharePoint Online. Safe Links scanning occurs in addition to the regular anti-spam and anti-malware protection in inbound email messages in Microsoft Exchange Online Protection (EOP). Safe Links scanning can help protect an organization from malicious links used in phishing and other attacks.
  • If you are using Microsoft Defender for Office 365, use the Attack Simulator in Microsoft Defender for Office 365 to run realistic, yet safe, simulated phishing and password attack campaigns. Run spear-phishing (credential harvest) simulations to train end-users against clicking URLs in unsolicited messages and disclosing credentials.

Conduct user education

  • Robust user education can help mitigate the threat of social engineering and phishing emails. Companies should have a user education program that highlights how to identify and report suspicious emails.

Microsoft Defender XDR detections

Microsoft Defender for Endpoint

The following alerts may also indicate threat activity associated with this threat. These alerts, however, can be triggered by unrelated threat activity and are not monitored in the status cards provided with this report.

  • Midnight Blizzard Actor activity group
  • Suspicious RDP session

Microsoft Defender Antivirus

Microsoft Defender Antivirus detects at least some of the malicious .RDP files as the following signature:

  • Backdoor:Script/HustleCon.A

Microsoft Defender for Cloud

The following alerts may also indicate threat activity associated with this threat. These alerts, however, can be triggered by unrelated threat activity and are not monitored in the status cards provided with this report.

  • Communication with suspicious domain identified by threat intelligence
  • Suspicious outgoing RDP network activity
  • Traffic detected from IP addresses recommended for blocking

Microsoft Defender for Office 365

Microsoft Defender for Office 365 raises alerts on this campaign using email- and attachment-based detections. Additionally, hunting signatures and an RDP file parser have been incorporated into detections to block similar campaigns in the future. Defenders can identify such activity in alert titles referencing RDP, for example, Trojan_RDP*.

Threat intelligence reports

Microsoft customers can use the following reports in Microsoft products to get the most up-to-date information about the threat actor, malicious activity, and techniques discussed in this blog. These reports provide threat intelligence, protection information, and recommended actions to prevent, mitigate, or respond to associated threats found in customer environments.

Microsoft Defender Threat Intelligence

Hunting queries

Microsoft Defender XDR

Identify potential Midnight Blizzard targeted recipients 

Surface possible targeted email accounts within the environment where the email sender originated from a Midnight Blizzard compromised domain related to the RDP activity.

EmailEvents 
| where SenderFromDomain in~ ("sellar.co.uk", "townoflakelure.com", "totalconstruction.com.au", "swpartners.com.au", "cewalton.com") 
| project SenderFromDomain, SenderFromAddress, RecipientEmailAddress, Subject, Timestamp 

Surface potential targets of an RDP attachment phishing attempt

Surface emails that contain a remote desktop protocol (RDP) file attached. This may indicate that the recipient of the email may have been targeted in an RDP attachment phishing attack attempt.

EmailAttachmentInfo
| where FileName has ".rdp"
| join kind=inner (EmailEvents) on NetworkMessageId
| project SenderFromAddress, RecipientEmailAddress, Subject, Timestamp, FileName, FileType

Identify potential successfully targeted assets in an RDP attachment phishing attack

Surface devices that may have been targeted in an email with an RDP file attached, followed by an RDP connection attempt from the device to an external network. This combined activity may indicate that a device may have been successfully targeted in an RDP attachment phishing attack.

// Step 1: Identify emails with RDP attachments
let rdpEmails = EmailAttachmentInfo
| where FileName has ".rdp"
| join kind=inner (EmailEvents) on NetworkMessageId
| project EmailTimestamp = Timestamp, RecipientEmailAddress, NetworkMessageId, SenderFromAddress;
// Step 2: Identify outbound RDP connections
let outboundRDPConnections = DeviceNetworkEvents
| where RemotePort == 3389
| where ActionType == "ConnectionAttempt"
| where RemoteIPType == "Public"
| project RDPConnectionTimestamp = Timestamp, DeviceId, InitiatingProcessAccountUpn, RemoteIP;
// Step 3: Correlate email and network events
rdpEmails
| join kind=inner (outboundRDPConnections) on $left.RecipientEmailAddress == $right.InitiatingProcessAccountUpn
| project EmailTimestamp, RecipientEmailAddress, SenderFromAddress, RDPConnectionTimestamp, DeviceId, RemoteIP

Threat actor RDP connection files attached to email

Surface users that may have received an RDP connection file attached in email that have been observed in this attack from Midnight Blizzard.

EmailAttachmentInfo
| where FileName in~ (
    "AWS IAM Compliance Check.rdp",
    "AWS IAM Configuration.rdp",
    "AWS IAM Quick Start.rdp",
    "AWS SDE Compliance Check.rdp",
    "AWS SDE Environment Check.rdp",
    "AWS Secure Data Exchange - Compliance Check.rdp",
    "AWS Secure Data Exchange Compliance.rdp",
    "Device Configuration Verification.rdp",
    "Device Security Requirements Check.rdp",
    "IAM Identity Center Access.rdp",
    "IAM Identity Center Application Access.rdp",
    "Zero Trust Architecture Configuration.rdp",
    "Zero Trust Security Environment Compliance Check.rdp",
    "ZTS Device Compatibility Test.rdp"
)
| project Timestamp, FileName, SHA256, RecipientEmailAddress, SenderDisplayName, SenderFromAddress

Microsoft Sentinel

Microsoft Sentinel customers can use the TI Mapping analytics (a series of analytics all prefixed with ‘TI map’) to automatically match the malicious domain indicators mentioned in this blog post with data in their workspace. If the TI Map analytics are not currently deployed, customers can install the Threat Intelligence solution from the Microsoft Sentinel Content Hub to have the analytics rule deployed in their Sentinel workspace.

Indicators of compromise

Email sender domains

DomainsLast seen
sellar[.]co.uk October 23, 2024
townoflakelure[.]com October 23, 2024
totalconstruction[.]com.au October 23, 2024
swpartners[.]com.au October 23, 2024
cewalton[.]com October 23, 2024

RDP file names

  • AWS IAM Compliance Check.rdp
  • AWS IAM Configuration.rdp
  • AWS IAM Quick Start.rdp
  • AWS SDE Compliance Check.rdp
  • AWS SDE Environment Check.rdp
  • AWS SDE Environment Check.rdp 
  • AWS Secure Data Exchange – Compliance Check.rdp
  • AWS Secure Data Exchange Compliance.rdp
  • Device Configuration Verification.rdp
  • Device Security Requirements Check.rdp
  • IAM Identity Center Access.rdp
  • IAM Identity Center Application Access.rdp
  • Zero Trust Architecture Configuration.rdp
  • Zero Trust Security Environment Compliance Check.rdp
  • ZTS Device Compatibility Test.rdp

RDP remote computer domains

ap-northeast-1-aws.s3-ua[.]cloudap-northeast-1-aws.ukrainesec[.]cloud
ca-central-1.gov-ua[.]cloudca-central-1.ua-gov[.]cloud
ca-west-1.aws-ukraine[.]cloudca-west-1.mfa-gov[.]cloud
ca-west-1.ukrtelecom[.]cloudcentral-2-aws.ua-mil[.]cloud
central-2-aws.ua-sec[.]cloudcentral-2-aws.ukrainesec[.]cloud
central-2-aws.ukrtelecom[.]cloudeu-central-1.difesa-it[.]cloud
eu-central-1.mfa-gov[.]cloudeu-central-1.mil-be[.]cloud
eu-central-1.mil-pl[.]cloudeu-central-1.minbuza[.]cloud
eu-central-1.mindef-nl[.]cloudeu-central-1.msz-pl[.]cloud
eu-central-1.quirinale[.]cloudeu-central-1.regeringskansliet-se[.]cloud
eu-central-1.s3-be[.]cloudeu-central-1.s3-esa[.]cloud
eu-central-1.s3-nato[.]cloudeu-central-1.ua-gov[.]cloud
eu-central-1.ua-sec[.]cloudeu-central-1.ukrtelecom[.]cloud
eu-central-1-aws.amazonsolutions[.]cloudeu-central-1-aws.dep-no[.]cloud
eu-central-1-aws.gov-pl[.]cloudeu-central-1-aws.gov-sk[.]cloud
eu-central-1-aws.gov-trust[.]cloudeu-central-1-aws.mfa-gov[.]cloud
eu-central-1-aws.minbuza[.]cloudeu-central-1-aws.mindef-nl[.]cloud
eu-central-1-aws.msz-pl[.]cloudeu-central-1-aws.mzv-sk[.]cloud
eu-central-1-aws.ncfta[.]cloudeu-central-1-aws.presidencia-pt[.]cloud
eu-central-1-aws.quirinale[.]cloudeu-central-1-aws.regeringskansliet-se[.]cloud
eu-central-1-aws.s3-be[.]cloudeu-central-1-aws.s3-ua[.]cloud
eu-central-1-aws.ua-gov[.]cloudeu-central-1-aws.ukrainesec[.]cloud
eu-central-2-aws.amazonsolutions[.]cloudeu-central-2-aws.aws-ukraine[.]cloud
eu-central-2-aws.dep-no[.]cloudeu-central-2-aws.gov-pl[.]cloud
eu-central-2-aws.gov-sk[.]cloudeu-central-2-aws.mil-be[.]cloud
eu-central-2-aws.mil-pl[.]cloudeu-central-2-aws.mindef-nl[.]cloud
eu-central-2-aws.msz-pl[.]cloudeu-central-2-aws.mzv-sk[.]cloud
eu-central-2-aws.presidencia-pt[.]cloudeu-central-2-aws.regeringskansliet-se[.]cloud
eu-central-2-aws.s3-be[.]cloudeu-central-2-aws.ua-gov[.]cloud
eu-central-2-aws.ua-mil[.]cloudeu-central-2-aws.ukrtelecom[.]cloud
eu-east-1-aws.amazonsolutions[.]cloudeu-east-1-aws.dep-no[.]cloud
eu-east-1-aws.gov-sk[.]cloudeu-east-1-aws.gov-ua[.]cloud
eu-east-1-aws.mil-be[.]cloudeu-east-1-aws.mil-pl[.]cloud
eu-east-1-aws.minbuza[.]cloudeu-east-1-aws.mindef-nl[.]cloud
eu-east-1-aws.msz-pl[.]cloudeu-east-1-aws.mzv-sk[.]cloud
eu-east-1-aws.quirinale[.]cloudeu-east-1-aws.regeringskansliet-se[.]cloud
eu-east-1-aws.s3-be[.]cloudeu-east-1-aws.s3-de[.]cloud
eu-east-1-aws.ua-gov[.]cloudeu-east-1-aws.ua-sec[.]cloud
eu-east-1-aws.ukrtelecom[.]cloudeu-north-1.difesa-it[.]cloud
eu-north-1.gov-trust[.]cloudeu-north-1.gov-ua[.]cloud
eu-north-1.gv-at[.]cloudeu-north-1.mil-be[.]cloud
eu-north-1.mil-pl[.]cloudeu-north-1.mzv-sk[.]cloud
eu-north-1.ncfta[.]cloudeu-north-1.regeringskansliet-se[.]cloud
eu-north-1.s3-be[.]cloudeu-north-1.s3-de[.]cloud
eu-north-1.s3-ua[.]cloudeu-north-1-aws.dep-no[.]cloud
eu-north-1-aws.difesa-it[.]cloudeu-north-1-aws.gov-pl[.]cloud
eu-north-1-aws.gov-sk[.]cloudeu-north-1-aws.mil-be[.]cloud
eu-north-1-aws.mil-pl[.]cloudeu-north-1-aws.minbuza[.]cloud
eu-north-1-aws.ncfta[.]cloudeu-north-1-aws.presidencia-pt[.]cloud
eu-north-1-aws.quirinale[.]cloudeu-north-1-aws.regeringskansliet-se[.]cloud
eu-north-1-aws.s3-be[.]cloudeu-north-1-aws.s3-de[.]cloud
eu-north-1-aws.ua-energy[.]cloudeu-north-1-aws.ua-gov[.]cloud
eu-south-1-aws.admin-ch[.]cloudeu-south-1-aws.dep-no[.]cloud
eu-south-1-aws.difesa-it[.]cloudeu-south-1-aws.gov-pl[.]cloud
eu-south-1-aws.gov-trust[.]cloudeu-south-1-aws.mfa-gov[.]cloud
eu-south-1-aws.mil-be[.]cloudeu-south-1-aws.minbuza[.]cloud
eu-south-1-aws.mzv-sk[.]cloudeu-south-1-aws.quirinale[.]cloud
eu-south-1-aws.s3-be[.]cloudeu-south-1-aws.s3-de[.]cloud
eu-south-1-aws.ua-gov[.]cloudeu-south-2.dep-no[.]cloud
eu-south-2.gov-pl[.]cloudeu-south-2.gov-sk[.]cloud
eu-south-2.mil-be[.]cloudeu-south-2.mil-pl[.]cloud
eu-south-2.mindef-nl[.]cloudeu-south-2.s3-be[.]cloud
eu-south-2.s3-de[.]cloudeu-south-2.s3-esa[.]cloud
eu-south-2.s3-nato[.]cloudeu-south-2.ua-sec[.]cloud
eu-south-2.ukrainesec[.]cloudeu-south-2-aws.amazonsolutions[.]cloud
eu-south-2-aws.dep-no[.]cloudeu-south-2-aws.gov-pl[.]cloud
eu-south-2-aws.gov-sk[.]cloudeu-south-2-aws.mfa-gov[.]cloud
eu-south-2-aws.mil-be[.]cloudeu-south-2-aws.mil-pl[.]cloud
eu-south-2-aws.mil-pt[.]cloudeu-south-2-aws.minbuza[.]cloud
eu-south-2-aws.msz-pl[.]cloudeu-south-2-aws.mzv-sk[.]cloud
eu-south-2-aws.ncfta[.]cloudeu-south-2-aws.quirinale[.]cloud
eu-south-2-aws.regeringskansliet-se[.]cloudeu-south-2-aws.s3-be[.]cloud
eu-south-2-aws.s3-de[.]cloudeu-south-2-aws.s3-esa[.]cloud
eu-south-2-aws.s3-nato[.]cloudeu-south-2-aws.s3-ua[.]cloud
eu-south-2-aws.ua-gov[.]cloudeu-southeast-1-aws.amazonsolutions[.]cloud
eu-southeast-1-aws.aws-ukraine[.]cloudeu-southeast-1-aws.dep-no[.]cloud
eu-southeast-1-aws.difesa-it[.]cloudeu-southeast-1-aws.gov-sk[.]cloud
eu-southeast-1-aws.gov-trust[.]cloudeu-southeast-1-aws.mil-be[.]cloud
eu-southeast-1-aws.mil-pl[.]cloudeu-southeast-1-aws.mindef-nl[.]cloud
eu-southeast-1-aws.msz-pl[.]cloudeu-southeast-1-aws.mzv-cz[.]cloud
eu-southeast-1-aws.mzv-sk[.]cloudeu-southeast-1-aws.quirinale[.]cloud
eu-southeast-1-aws.s3-be[.]cloudeu-southeast-1-aws.s3-de[.]cloud
eu-southeast-1-aws.s3-esa[.]cloudeu-southeast-1-aws.s3-ua[.]cloud
eu-southeast-1-aws.ua-energy[.]cloudeu-southeast-1-aws.ukrainesec[.]cloud
eu-west-1.aws-ukraine[.]cloudeu-west-1.difesa-it[.]cloud
eu-west-1.gov-sk[.]cloudeu-west-1.mil-be[.]cloud
eu-west-1.mil-pl[.]cloudeu-west-1.minbuza[.]cloud
eu-west-1.msz-pl[.]cloudeu-west-1.mzv-sk[.]cloud
eu-west-1.regeringskansliet-se[.]cloudeu-west-1.s3-de[.]cloud
eu-west-1.s3-esa[.]cloudeu-west-1.s3-ua[.]cloud
eu-west-1.ua-gov[.]cloudeu-west-1.ukrtelecom[.]cloud
eu-west-1-aws.amazonsolutions[.]cloudeu-west-1-aws.aws-ukraine[.]cloud
eu-west-1-aws.dep-no[.]cloudeu-west-1-aws.gov-pl[.]cloud
eu-west-1-aws.gov-sk[.]cloudeu-west-1-aws.gov-trust[.]cloud
eu-west-1-aws.gov-ua[.]cloudeu-west-1-aws.mil-be[.]cloud
eu-west-1-aws.mil-pl[.]cloudeu-west-1-aws.minbuza[.]cloud
eu-west-1-aws.quirinale[.]cloudeu-west-1-aws.s3-be[.]cloud
eu-west-1-aws.s3-de[.]cloudeu-west-1-aws.s3-esa[.]cloud
eu-west-1-aws.s3-nato[.]cloudeu-west-1-aws.ua-sec[.]cloud
eu-west-1-aws.ukrainesec[.]cloudeu-west-2-aws.amazonsolutions[.]cloud
eu-west-2-aws.dep-no[.]cloudeu-west-2-aws.difesa-it[.]cloud
eu-west-2-aws.gov-pl[.]cloudeu-west-2-aws.gov-sk[.]cloud
eu-west-2-aws.gv-at[.]cloudeu-west-2-aws.mil-be[.]cloud
eu-west-2-aws.mil-pl[.]cloudeu-west-2-aws.minbuza[.]cloud
eu-west-2-aws.mindef-nl[.]cloudeu-west-2-aws.msz-pl[.]cloud
eu-west-2-aws.mzv-sk[.]cloudeu-west-2-aws.quirinale[.]cloud
eu-west-2-aws.s3-be[.]cloudeu-west-2-aws.s3-de[.]cloud
eu-west-2-aws.s3-esa[.]cloudeu-west-2-aws.s3-nato[.]cloud
eu-west-2-aws.s3-ua[.]cloudeu-west-2-aws.ua-sec[.]cloud
eu-west-3.amazonsolutions[.]cloudeu-west-3.aws-ukraine[.]cloud
eu-west-3.mil-be[.]cloudeu-west-3.mil-pl[.]cloud
eu-west-3.minbuza[.]cloudeu-west-3.mindef-nl[.]cloud
eu-west-3.msz-pl[.]cloudeu-west-3.mzv-sk[.]cloud
eu-west-3.presidencia-pt[.]cloudeu-west-3.s3-be[.]cloud
eu-west-3.s3-ua[.]cloudeu-west-3.ukrainesec[.]cloud
eu-west-3.ukrtelecom[.]cloudeu-west-3-aws.aws-ukraine[.]cloud
eu-west-3-aws.dep-no[.]cloudeu-west-3-aws.difesa-it[.]cloud
eu-west-3-aws.gov-pl[.]cloudeu-west-3-aws.gov-sk[.]cloud
eu-west-3-aws.gov-trust[.]cloudeu-west-3-aws.mil-be[.]cloud
eu-west-3-aws.mil-pl[.]cloudeu-west-3-aws.mil-pt[.]cloud
eu-west-3-aws.minbuza[.]cloudeu-west-3-aws.mindef-nl[.]cloud
eu-west-3-aws.msz-pl[.]cloudeu-west-3-aws.mzv-sk[.]cloud
eu-west-3-aws.quirinale[.]cloudeu-west-3-aws.regeringskansliet-se[.]cloud
eu-west-3-aws.s3-be[.]cloudeu-west-3-aws.s3-ua[.]cloud
eu-west-3-aws.ua-mil[.]cloudus-east-1-aws.mfa-gov[.]cloud
us-east-1-aws.s3-ua[.]cloudus-east-1-aws.ua-gov[.]cloud
us-east-1-aws.ua-sec[.]cloudus-east-2.aws-ukraine[.]cloud
us-east-2.gov-ua[.]cloudus-east-2.ua-sec[.]cloud
us-east-2.ukrainesec[.]cloudus-east-2-aws.gov-ua[.]cloud
us-east-2-aws.ua-gov[.]cloudus-east-2-aws.ukrtelecom[.]cloud
us-east-console.aws-ukraine[.]cloudus-east-console.ua-energy[.]cloud
us-west-1.aws-ukraine[.]cloudus-west-1.ua-energy[.]cloud
us-west-1.ua-gov[.]cloudus-west-1.ukrtelecom[.]cloud
us-west-1-amazon.ua-energy[.]cloudus-west-1-amazon.ua-mil[.]cloud
us-west-1-amazon.ua-sec[.]cloudus-west-1-aws.gov-ua[.]cloud
us-west-2.gov-ua[.]cloudus-west-2.ua-energy[.]cloud
us-west-2.ua-sec[.]cloudus-west-2-aws.mfa-gov[.]cloud
us-west-2-aws.s3-ua[.]cloudus-west-2-aws.ua-energy[.]cloud

References

Learn more

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on LinkedIn at https://www.linkedin.com/showcase/microsoft-threat-intelligence, and on X (formerly Twitter) at https://twitter.com/MsftSecIntel.

To hear stories and insights from the Microsoft Threat Intelligence community about the ever-evolving threat landscape, listen to the Microsoft Threat Intelligence podcast: https://thecyberwire.com/podcasts/microsoft-threat-intelligence.

The post Midnight Blizzard conducts large-scale spear-phishing campaign using RDP files appeared first on Microsoft Security Blog.

]]>
Analyzing Forest Blizzard’s custom post-compromise tool for exploiting CVE-2022-38028 to obtain credentials http://approjects.co.za/?big=en-us/security/blog/2024/04/22/analyzing-forest-blizzards-custom-post-compromise-tool-for-exploiting-cve-2022-38028-to-obtain-credentials/ Mon, 22 Apr 2024 16:00:00 +0000 Since 2019, Forest Blizzard has used a custom post-compromise tool to exploit a vulnerability in the Windows Print Spooler service that allows elevated permissions. Microsoft has issued a security update addressing this vulnerability as CVE-2022-38028.

The post Analyzing Forest Blizzard’s custom post-compromise tool for exploiting CVE-2022-38028 to obtain credentials appeared first on Microsoft Security Blog.

]]>
Microsoft Threat Intelligence is publishing results of our longstanding investigation into activity by the Russian-based threat actor Forest Blizzard (STRONTIUM) using a custom tool to elevate privileges and steal credentials in compromised networks. Since at least June 2020 and possibly as early as April 2019, Forest Blizzard has used the tool, which we refer to as GooseEgg, to exploit the CVE-2022-38028 vulnerability in Windows Print Spooler service by modifying a JavaScript constraints file and executing it with SYSTEM-level permissions. Microsoft has observed Forest Blizzard using GooseEgg as part of post-compromise activities against targets including Ukrainian, Western European, and North American government, non-governmental, education, and transportation sector organizations. While a simple launcher application, GooseEgg is capable of spawning other applications specified at the command line with elevated permissions, allowing threat actors to support any follow-on objectives such as remote code execution, installing a backdoor, and moving laterally through compromised networks.

Forest Blizzard often uses publicly available exploits in addition to CVE-2022-38028, such as CVE-2023-23397. Linked to the Russian General Staff Main Intelligence Directorate (GRU) by the United States and United Kingdom governments, Forest Blizzard primarily focuses on strategic intelligence targets and differs from other GRU-affiliated and sponsored groups, which Microsoft has tied to destructive attacks, such as Seashell Blizzard (IRIDIUM) and Cadet Blizzard (DEV-0586). Although Russian threat actors are known to have exploited a set of similar vulnerabilities known as PrintNightmare (CVE-2021-34527 and CVE-2021-1675), the use of GooseEgg in Forest Blizzard operations is a unique discovery that had not been previously reported by security providers. Microsoft is committed to providing visibility into observed malicious activity and sharing insights on threat actors to help organizations protect themselves. Organizations and users are to apply the CVE-2022-38028 security update to mitigate this threat, while Microsoft Defender Antivirus detects the specific Forest Blizzard capability as HackTool:Win64/GooseEgg.

This blog provides technical information on GooseEgg, a unique Forest Blizzard capability. In addition to patching, this blog details several steps users can take to defend themselves against attempts to exploit Print Spooler vulnerabilities. We also provide additional recommendations, detections, and indicators of compromise. As with any observed nation-state actor activity, Microsoft directly notifies customers that have been targeted or compromised, providing them with the necessary information to secure their accounts.

Who is Forest Blizzard?

Forest Blizzard primarily targets government, energy, transportation, and non-governmental organizations in the United States, Europe, and the Middle East. Microsoft has also observed Forest Blizzard targeting media, information technology, sports organizations, and educational institutions worldwide. Since at least 2010, the threat actor’s primary mission has been to collect intelligence in support of Russian government foreign policy initiatives. The United States and United Kingdom governments have linked Forest Blizzard to Unit 26165 of the Russian Federation’s military intelligence agency, the Main Intelligence Directorate of the General Staff of the Armed Forces of the Russian Federation (GRU). Other security researchers have used GRU Unit 26165, APT28, Sednit, Sofacy, and Fancy Bear to refer to groups with similar or related activities.

GooseEgg

Microsoft Threat Intelligence assesses Forest Blizzard’s objective in deploying GooseEgg is to gain elevated access to target systems and steal credentials and information. While this actor’s TTPs and infrastructure specific to the use of this tool can change at any time, the following sections provide additional details on Forest Blizzard tactics, techniques, and procedures (TTPs) in past compromises.

Launch, persistence, and privilege escalation

Microsoft has observed that, after obtaining access to a target device, Forest Blizzard uses GooseEgg to elevate privileges within the environment. GooseEgg is typically deployed with a batch script, which we have observed using the name execute.bat and doit.bat. This batch script writes the file servtask.bat, which contains commands for saving off/compressing registry hives. The batch script invokes the paired GooseEgg executable and sets up persistence as a scheduled task designed to run servtask.bat.

Screenshot of the batch file code
Figure 1. Batch file

The GooseEgg binary—which has included but is not limited to the file names justice.exe and DefragmentSrv.exe—takes one of four commands, each with different run paths. While the binary appears to launch a trivial given command, in fact the binary does this in a unique and sophisticated manner, likely to help conceal the activity.

The first command issues a custom return code 0x6009F49F and exits; which could be indicative of a version number. The next two commands trigger the exploit and launch either a provided dynamic-link library (DLL) or executable with elevated permissions. The fourth and final command tests the exploit and checks that it has succeeded using the whoami command.

Microsoft has observed that the name of an embedded malicious DLL file typically includes the phrase “wayzgoose”; for example, wayzgoose23.dll. This DLL, as well as other components of the malware, are deployed to one of the following installation subdirectories, which is created under C:\ProgramData. A subdirectory name is selected from the list below:

  • Microsoft
  • Adobe
  • Comms
  • Intel
  • Kaspersky Lab
  • Bitdefender
  • ESET
  • NVIDIA
  • UbiSoft
  • Steam

A specially crafted subdirectory with randomly generated numbers and the format string \v%u.%02u.%04u is also created and serves as the install directory. For example, a directory that looks like C:\ProgramData\Adobe\v2.116.4405 may be created. The binary then copies the following driver stores to this directory:

  • C:\Windows\System32\DriverStore\FileRepository\pnms003.inf_*
  • C:\Windows\System32\DriverStore\FileRepository\pnms009.inf_*
Screenshot of code depicting the GooseEgg binary adding driver stores to an actor-controlled directory
Figure 2. GooseEgg binary adding driver stores to an actor-controlled directory

Next, registry keys are created, effectively generating a custom protocol handler and registering a new CLSID to serve as the COM server for this “rogue” protocol. The exploit replaces the C: drive symbolic link in the object manager to point to the newly created directory. When the PrintSpooler attempts to load C:\Windows\System32\DriverStore\FileRepository\pnms009.inf_amd64_a7412a554c9bc1fd\MPDW-Constraints.js, it instead is redirected to the actor-controlled directory containing the copied driver packages.

Screenshot of the registry key creation code
Figure 3. Registry key creation
Screenshot of the C: drive symbolic link hijack code
Figure 4. C: drive symbolic link hijack

The “MPDW-constraints.js” stored within the actor-controlled directory has the following patch applied to the convertDevModeToPrintTicket function:

function convertDevModeToPrintTicket(devModeProperties, scriptContext, printTicket)
{try{ printTicket.XmlNode.load('rogue9471://go'); } catch (e) {}

The above patch to the convertDevModeToPrintTicket function invokes the “rogue” search protocol handler’s CLSID during the call to RpcEndDocPrinter. This results in the auxiliary DLL wayzgoose.dll launching in the context of the PrintSpooler service with SYSTEM permissions. wayzgoose.dll is a basic launcher application capable of spawning other applications specified at the command line with SYSTEM-level permissions, enabling threat actors to perform other malicious activities such as installing a backdoor, moving laterally through compromised networks, and remotely executing code.

Recommendations

Microsoft recommends the following mitigations defend against attacks that use GooseEgg.

Reduce the Print Spooler vulnerability

Microsoft released a security update for the Print Spooler vulnerability exploited by GooseEgg on October 11, 2022 and updates for PrintNightmare vulnerabilities on June 8, 2021 and July 1, 2021. Customers who have not implemented these fixes yet are urged to do so as soon as possible for their organization’s security. In addition, since the Print Spooler service isn’t required for domain controller operations, Microsoft recommends disabling the service on domain controllers. Otherwise, users can install available Windows security updates for Print Spooler vulnerabilities on Windows domain controllers before member servers and workstations. To help identify domain controllers that have the Print Spooler service enabled, Microsoft Defender for Identity has a built-in security assessment that tracks the availability of Print Spooler services on domain controllers.

Be proactively defensive

  • For customers, follow the credential hardening recommendations in our on-premises credential theft overview to defend against common credential theft techniques like LSASS access.
  • Run Endpoint Detection and Response (EDR) in block mode so that Microsoft Defender for Endpoint can block malicious artifacts, even when your non-Microsoft antivirus does not detect the threat or when Microsoft Defender Antivirus is running in passive mode. EDR in block mode works behind the scenes to remediate malicious artifacts that are detected post-breach.    
  • Configure investigation and remediation in full automated mode to let Microsoft Defender for Endpoint take immediate action on alerts to resolve breaches, significantly reducing alert volume. 
  • Turn on cloud-delivered protection in Microsoft Defender Antivirus, or the equivalent for your antivirus product, to cover rapidly evolving attacker tools and techniques. Cloud-based machine learning protections block a majority of new and unknown variants.

Microsoft Defender XDR customers can turn on the following attack surface reduction rule to prevent common attack techniques used for GooseEgg. Microsoft Defender XDR detects the GooseEgg tool and raises an alert upon detection of attempts to exploit Print Spooler vulnerabilities regardless of whether the device has been patched.

Detecting, hunting, and responding to GooseEgg

Microsoft Defender XDR detections

Microsoft Defender Antivirus

Microsoft Defender Antivirus detects threat components as the following malware:

  • HackTool:Win64/GooseEgg

Microsoft Defender for Endpoint

The following alerts might also indicate threat activity related to this threat. Note, however, that these alerts can be also triggered by unrelated threat activity.

  • Possible exploitation of CVE-2021-34527
  • Possible source of PrintNightmare exploitation
  • Possible target of PrintNightmare exploitation attempt
  • Potential elevation of privilege using print filter pipeline service
  • Suspicious behavior by spoolsv.exe
  • Forest Blizzard Actor activity detected

Microsoft Defender for Identity

The following alerts might also indicate threat activity related to this threat. Note, however, that these alerts can be also triggered by unrelated threat activity.

  • Suspected Windows Print Spooler service exploitation attempt (CVE-2021-34527 exploitation)

Threat intelligence reports

Microsoft customers can use the following reports in Microsoft products to get the most up-to-date information about the threat actor, malicious activity, and techniques discussed in this blog. These reports provide the intelligence, protection information, and recommended actions to prevent, mitigate, or respond to associated threats found in customer environments.

Microsoft Defender Threat Intelligence

Hunting queries

Microsoft Sentinel

Microsoft Sentinel customers can use the TI Mapping analytics (a series of analytics all prefixed with ‘TI map’) to automatically match the malicious domain indicators mentioned in this blog post with data in their workspace. If the TI Map analytics are not currently deployed, customers can install the Threat Intelligence solution from the Microsoft Sentinel Content Hub to have the analytics rule deployed in their Sentinel workspace. More details on the Content Hub can be found here:  https://learn.microsoft.com/azure/sentinel/sentinel-solutions-deploy.

Hunt for filenames, file extensions in ProgramData folder and file hash

let filenames = dynamic(["execute.bat","doit.bat","servtask.bat"]);
DeviceFileEvents
  | where TimeGenerated > ago(60d) // change the duration according to your requirement
  | where ActionType == "FileCreated"
  | where FolderPath == "C:\\ProgramData\\"
  | where FileName in~ (filenames) or FileName endswith ".save" or FileName endswith ".zip" or ( FileName startswith "wayzgoose" and FileName endswith ".dll") or SHA256 == "7d51e5cc51c43da5deae5fbc2dce9b85c0656c465bb25ab6bd063a503c1806a9" // hash value of execute.bat/doit.bat/servtask.bat
  | project TimeGenerated, DeviceId, DeviceName, ActionType, FolderPath, FileName, InitiatingProcessAccountName,InitiatingProcessAccountUpn

Hunt for processes creating scheduled task creation

DeviceProcessEvents
| where TimeGenerated > ago(60d) // change the duration according to your requirement
| where InitiatingProcessSHA256 == "6b311c0a977d21e772ac4e99762234da852bbf84293386fbe78622a96c0b052f" or SHA256 == "6b311c0a977d21e772ac4e99762234da852bbf84293386fbe78622a96c0b052f" //hash value of justice.exe
or InitiatingProcessSHA256 == "c60ead92cd376b689d1b4450f2578b36ea0bf64f3963cfa5546279fa4424c2a5" or SHA256 == "c60ead92cd376b689d1b4450f2578b36ea0bf64f3963cfa5546279fa4424c2a5" //hash value of DefragmentSrv.exe
or ProcessCommandLine contains "schtasks /Create /RU SYSTEM /TN \\Microsoft\\Windows\\WinSrv /TR C:\\ProgramData\\servtask.bat /SC MINUTE" or
   ProcessCommandLine contains "schtasks /Create /RU SYSTEM /TN \\Microsoft\\Windows\\WinSrv /TR C:\\ProgramData\\execute.bat /SC MINUTE" or
   ProcessCommandLine contains "schtasks /Create /RU SYSTEM /TN \\Microsoft\\Windows\\WinSrv /TR C:\\ProgramData\\doit.bat /SC MINUTE" or
   ProcessCommandLine contains "schtasks /DELETE /F /TN \\Microsoft\\Windows\\WinSrv" or
   InitiatingProcessCommandLine contains "schtasks /Create /RU SYSTEM /TN \\Microsoft\\Windows\\WinSrv /TR C:\\ProgramData\\servtask.bat /SC MINUTE" or
   InitiatingProcessCommandLine contains "schtasks /Create /RU SYSTEM /TN \\Microsoft\\Windows\\WinSrv /TR C:\\ProgramData\\execute.bat /SC MINUTE" or
   InitiatingProcessCommandLine contains "schtasks /Create /RU SYSTEM /TN \\Microsoft\\Windows\\WinSrv /TR C:\\ProgramData\\doit.bat /SC MINUTE" or
   InitiatingProcessCommandLine contains "schtasks /DELETE /F /TN \\Microsoft\\Windows\\WinSrv"
| project TimeGenerated, AccountName,AccountUpn,ActionType, DeviceId, DeviceName,FolderPath, FileName

Hunt for JavaScript constrained file

DeviceFileEvents
  | where TimeGenerated > ago(60d) // change the duration according to your requirement
  | where ActionType == "FileCreated"
  | where FolderPath startswith "C:\\Windows\\System32\\DriverStore\\FileRepository\\"
  | where FileName endswith ".js" or FileName == "MPDW-constraints.js"

Hunt for creation of registry key / value events

DeviceRegistryEvents
  | where TimeGenerated > ago(60d) // change the duration according to your requirement
  | where ActionType == "RegistryValueSet"
  | where RegistryKey contains "HKEY_CURRENT_USER\\Software\\Classes\\CLSID\\{026CC6D7-34B2-33D5-B551-CA31EB6CE345}\\Server"
  | where RegistryValueName has "(Default)"
  | where RegistryValueData has "wayzgoose.dll" or RegistryValueData contains ".dll"

 Hunt for custom protocol handler

DeviceRegistryEvents
  | where TimeGenerated > ago(60d) // change the duration according to your requirement
  | where ActionType == "RegistryValueSet"
  | where RegistryKey contains "HKEY_CURRENT_USER\\Software\\Classes\\PROTOCOLS\\Handler\\rogue"
  | where RegistryValueName has "CLSID"
  | where RegistryValueData contains "{026CC6D7-34B2-33D5-B551-CA31EB6CE345}"

Indicators of compromise

Batch script artifacts:

  • execute.bat
  • doit.bat
  • servtask.bat
  • 7d51e5cc51c43da5deae5fbc2dce9b85c0656c465bb25ab6bd063a503c1806a9

GooseEgg artifacts:

  • justice.pdb
  • wayzgoose.pdb
IndicatorTypeDescription
c60ead92cd376b689d1b4450f2578b36ea0bf64f3963cfa5546279fa4424c2a5SHA-256Hash of GooseEgg binary DefragmentSrv.exe
6b311c0a977d21e772ac4e99762234da852bbf84293386fbe78622a96c0b052fSHA-256Hash of GooseEgg binary justice.exe
41a9784f8787ed86f1e5d20f9895059dac7a030d8d6e426b9ddcaf547c3393aaSHA-256Hash of wayzgoose[%n].dll – where %n is a random number

References

Learn more

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on LinkedIn at https://www.linkedin.com/showcase/microsoft-threat-intelligence, and on X (formerly Twitter) at https://twitter.com/MsftSecIntel.

To hear stories and insights from the Microsoft Threat Intelligence community about the ever-evolving threat landscape, listen to the Microsoft Threat Intelligence podcast: https://thecyberwire.com/podcasts/microsoft-threat-intelligence.

The post Analyzing Forest Blizzard’s custom post-compromise tool for exploiting CVE-2022-38028 to obtain credentials appeared first on Microsoft Security Blog.

]]>
Staying ahead of threat actors in the age of AI http://approjects.co.za/?big=en-us/security/blog/2024/02/14/staying-ahead-of-threat-actors-in-the-age-of-ai/ Wed, 14 Feb 2024 12:00:00 +0000 Microsoft, in collaboration with OpenAI, is publishing research on emerging threats in the age of AI, focusing on identified activity associated with known threat actors Forest Blizzard, Emerald Sleet, Crimson Sandstorm, and others. The observed activity includes prompt-injections, attempted misuse of large language models (LLM), and fraud.

The post Staying ahead of threat actors in the age of AI appeared first on Microsoft Security Blog.

]]>
Over the last year, the speed, scale, and sophistication of attacks has increased alongside the rapid development and adoption of AI. Defenders are only beginning to recognize and apply the power of generative AI to shift the cybersecurity balance in their favor and keep ahead of adversaries. At the same time, it is also important for us to understand how AI can be potentially misused in the hands of threat actors. In collaboration with OpenAI, today we are publishing research on emerging threats in the age of AI, focusing on identified activity associated with known threat actors, including prompt-injections, attempted misuse of large language models (LLM), and fraud. Our analysis of the current use of LLM technology by threat actors revealed behaviors consistent with attackers using AI as another productivity tool on the offensive landscape. You can read OpenAI’s blog on the research here. Microsoft and OpenAI have not yet observed particularly novel or unique AI-enabled attack or abuse techniques resulting from threat actors’ usage of AI. However, Microsoft and our partners continue to study this landscape closely.

The objective of Microsoft’s partnership with OpenAI, including the release of this research, is to ensure the safe and responsible use of AI technologies like ChatGPT, upholding the highest standards of ethical application to protect the community from potential misuse. As part of this commitment, we have taken measures to disrupt assets and accounts associated with threat actors, improve the protection of OpenAI LLM technology and users from attack or abuse, and shape the guardrails and safety mechanisms around our models. In addition, we are also deeply committed to using generative AI to disrupt threat actors and leverage the power of new tools, including Microsoft Copilot for Security, to elevate defenders everywhere.

A principled approach to detecting and blocking threat actors

The progress of technology creates a demand for strong cybersecurity and safety measures. For example, the White House’s Executive Order on AI requires rigorous safety testing and government supervision for AI systems that have major impacts on national and economic security or public health and safety. Our actions enhancing the safeguards of our AI models and partnering with our ecosystem on the safe creation, implementation, and use of these models align with the Executive Order’s request for comprehensive AI safety and security standards.

In line with Microsoft’s leadership across AI and cybersecurity, today we are announcing principles shaping Microsoft’s policy and actions mitigating the risks associated with the use of our AI tools and APIs by nation-state advanced persistent threats (APTs), advanced persistent manipulators (APMs), and cybercriminal syndicates we track.

These principles include:   

  • Identification and action against malicious threat actors’ use: Upon detection of the use of any Microsoft AI application programming interfaces (APIs), services, or systems by an identified malicious threat actor, including nation-state APT or APM, or the cybercrime syndicates we track, Microsoft will take appropriate action to disrupt their activities, such as disabling the accounts used, terminating services, or limiting access to resources.           
  • Notification to other AI service providers: When we detect a threat actor’s use of another service provider’s AI, AI APIs, services, and/or systems, Microsoft will promptly notify the service provider and share relevant data. This enables the service provider to independently verify our findings and take action in accordance with their own policies.
  • Collaboration with other stakeholders: Microsoft will collaborate with other stakeholders to regularly exchange information about detected threat actors’ use of AI. This collaboration aims to promote collective, consistent, and effective responses to ecosystem-wide risks.
  • Transparency: As part of our ongoing efforts to advance responsible use of AI, Microsoft will inform the public and stakeholders about actions taken under these threat actor principles, including the nature and extent of threat actors’ use of AI detected within our systems and the measures taken against them, as appropriate.

Microsoft remains committed to responsible AI innovation, prioritizing the safety and integrity of our technologies with respect for human rights and ethical standards. These principles announced today build on Microsoft’s Responsible AI practices, our voluntary commitments to advance responsible AI innovation and the Azure OpenAI Code of Conduct. We are following these principles as part of our broader commitments to strengthening international law and norms and to advance the goals of the Bletchley Declaration endorsed by 29 countries.

Microsoft and OpenAI’s complementary defenses protect AI platforms

Because Microsoft and OpenAI’s partnership extends to security, the companies can take action when known and emerging threat actors surface. Microsoft Threat Intelligence tracks more than 300 unique threat actors, including 160 nation-state actors, 50 ransomware groups, and many others. These adversaries employ various digital identities and attack infrastructures. Microsoft’s experts and automated systems continually analyze and correlate these attributes, uncovering attackers’ efforts to evade detection or expand their capabilities by leveraging new technologies. Consistent with preventing threat actors’ actions across our technologies and working closely with partners, Microsoft continues to study threat actors’ use of AI and LLMs, partner with OpenAI to monitor attack activity, and apply what we learn to continually improve defenses. This blog provides an overview of observed activities collected from known threat actor infrastructure as identified by Microsoft Threat Intelligence, then shared with OpenAI to identify potential malicious use or abuse of their platform and protect our mutual customers from future threats or harm.

Recognizing the rapid growth of AI and emergent use of LLMs in cyber operations, we continue to work with MITRE to integrate these LLM-themed tactics, techniques, and procedures (TTPs) into the MITRE ATT&CK® framework or MITRE ATLAS™ (Adversarial Threat Landscape for Artificial-Intelligence Systems) knowledgebase. This strategic expansion reflects a commitment to not only track and neutralize threats, but also to pioneer the development of countermeasures in the evolving landscape of AI-powered cyber operations. A full list of the LLM-themed TTPs, which include those we identified during our investigations, is summarized in the appendix.

Summary of Microsoft and OpenAI’s findings and threat intelligence

The threat ecosystem over the last several years has revealed a consistent theme of threat actors following trends in technology in parallel with their defender counterparts. Threat actors, like defenders, are looking at AI, including LLMs, to enhance their productivity and take advantage of accessible platforms that could advance their objectives and attack techniques. Cybercrime groups, nation-state threat actors, and other adversaries are exploring and testing different AI technologies as they emerge, in an attempt to understand potential value to their operations and the security controls they may need to circumvent. On the defender side, hardening these same security controls from attacks and implementing equally sophisticated monitoring that anticipates and blocks malicious activity is vital.

While different threat actors’ motives and complexity vary, they have common tasks to perform in the course of targeting and attacks. These include reconnaissance, such as learning about potential victims’ industries, locations, and relationships; help with coding, including improving things like software scripts and malware development; and assistance with learning and using native languages. Language support is a natural feature of LLMs and is attractive for threat actors with continuous focus on social engineering and other techniques relying on false, deceptive communications tailored to their targets’ jobs, professional networks, and other relationships.

Importantly, our research with OpenAI has not identified significant attacks employing the LLMs we monitor closely. At the same time, we feel this is important research to publish to expose early-stage, incremental moves that we observe well-known threat actors attempting, and share information on how we are blocking and countering them with the defender community.

While attackers will remain interested in AI and probe technologies’ current capabilities and security controls, it’s important to keep these risks in context. As always, hygiene practices such as multifactor authentication (MFA) and Zero Trust defenses are essential because attackers may use AI-based tools to improve their existing cyberattacks that rely on social engineering and finding unsecured devices and accounts.

The threat actors profiled below are a sample of observed activity we believe best represents the TTPs the industry will need to better track using MITRE ATT&CK® framework or MITRE ATLAS™ knowledgebase updates.

Forest Blizzard 

Forest Blizzard (STRONTIUM) is a Russian military intelligence actor linked to GRU Unit 26165, who has targeted victims of both tactical and strategic interest to the Russian government. Their activities span across a variety of sectors including defense, transportation/logistics, government, energy, non-governmental organizations (NGO), and information technology. Forest Blizzard has been extremely active in targeting organizations in and related to Russia’s war in Ukraine throughout the duration of the conflict, and Microsoft assesses that Forest Blizzard operations play a significant supporting role to Russia’s foreign policy and military objectives both in Ukraine and in the broader international community. Forest Blizzard overlaps with the threat actor tracked by other researchers as APT28 and Fancy Bear.

Forest Blizzard’s use of LLMs has involved research into various satellite and radar technologies that may pertain to conventional military operations in Ukraine, as well as generic research aimed at supporting their cyber operations. Based on these observations, we map and classify these TTPs using the following descriptions:

  • LLM-informed reconnaissance: Interacting with LLMs to understand satellite communication protocols, radar imaging technologies, and specific technical parameters. These queries suggest an attempt to acquire in-depth knowledge of satellite capabilities.
  • LLM-enhanced scripting techniques: Seeking assistance in basic scripting tasks, including file manipulation, data selection, regular expressions, and multiprocessing, to potentially automate or optimize technical operations.

Microsoft observed engagement from Forest Blizzard that were representative of an adversary exploring the use cases of a new technology. All accounts and assets associated with Forest Blizzard have been disabled.

Emerald Sleet

Emerald Sleet (THALLIUM) is a North Korean threat actor that has remained highly active throughout 2023. Their recent operations relied on spear-phishing emails to compromise and gather intelligence from prominent individuals with expertise on North Korea. Microsoft observed Emerald Sleet impersonating reputable academic institutions and NGOs to lure victims into replying with expert insights and commentary about foreign policies related to North Korea. Emerald Sleet overlaps with threat actors tracked by other researchers as Kimsuky and Velvet Chollima.

Emerald Sleet’s use of LLMs has been in support of this activity and involved research into think tanks and experts on North Korea, as well as the generation of content likely to be used in spear-phishing campaigns. Emerald Sleet also interacted with LLMs to understand publicly known vulnerabilities, to troubleshoot technical issues, and for assistance with using various web technologies. Based on these observations, we map and classify these TTPs using the following descriptions:

  • LLM-assisted vulnerability research: Interacting with LLMs to better understand publicly reported vulnerabilities, such as the CVE-2022-30190 Microsoft Support Diagnostic Tool (MSDT) vulnerability (known as “Follina”).
  • LLM-enhanced scripting techniques: Using LLMs for basic scripting tasks such as programmatically identifying certain user events on a system and seeking assistance with troubleshooting and understanding various web technologies.
  • LLM-supported social engineering: Using LLMs for assistance with the drafting and generation of content that would likely be for use in spear-phishing campaigns against individuals with regional expertise.
  • LLM-informed reconnaissance: Interacting with LLMs to identify think tanks, government organizations, or experts on North Korea that have a focus on defense issues or North Korea’s nuclear weapon’s program.

All accounts and assets associated with Emerald Sleet have been disabled.

Crimson Sandstorm

Crimson Sandstorm (CURIUM) is an Iranian threat actor assessed to be connected to the Islamic Revolutionary Guard Corps (IRGC). Active since at least 2017, Crimson Sandstorm has targeted multiple sectors, including defense, maritime shipping, transportation, healthcare, and technology. These operations have frequently relied on watering hole attacks and social engineering to deliver custom .NET malware. Prior research also identified custom Crimson Sandstorm malware using email-based command-and-control (C2) channels. Crimson Sandstorm overlaps with the threat actor tracked by other researchers as Tortoiseshell, Imperial Kitten, and Yellow Liderc.

The use of LLMs by Crimson Sandstorm has reflected the broader behaviors that the security community has observed from this threat actor. Interactions have involved requests for support around social engineering, assistance in troubleshooting errors, .NET development, and ways in which an attacker might evade detection when on a compromised machine. Based on these observations, we map and classify these TTPs using the following descriptions:

  • LLM-supported social engineering: Interacting with LLMs to generate various phishing emails, including one pretending to come from an international development agency and another attempting to lure prominent feminists to an attacker-built website on feminism. 
  • LLM-enhanced scripting techniques: Using LLMs to generate code snippets that appear intended to support app and web development, interactions with remote servers, web scraping, executing tasks when users sign in, and sending information from a system via email.
  • LLM-enhanced anomaly detection evasion: Attempting to use LLMs for assistance in developing code to evade detection, to learn how to disable antivirus via registry or Windows policies, and to delete files in a directory after an application has been closed.

All accounts and assets associated with Crimson Sandstorm have been disabled.

Charcoal Typhoon

Charcoal Typhoon (CHROMIUM) is a Chinese state-affiliated threat actor with a broad operational scope. They are known for targeting sectors that include government, higher education, communications infrastructure, oil & gas, and information technology. Their activities have predominantly focused on entities within Taiwan, Thailand, Mongolia, Malaysia, France, and Nepal, with observed interests extending to institutions and individuals globally who oppose China’s policies. Charcoal Typhoon overlaps with the threat actor tracked by other researchers as Aquatic Panda, ControlX, RedHotel, and BRONZE UNIVERSITY.

In recent operations, Charcoal Typhoon has been observed interacting with LLMs in ways that suggest a limited exploration of how LLMs can augment their technical operations. This has consisted of using LLMs to support tooling development, scripting, understanding various commodity cybersecurity tools, and for generating content that could be used to social engineer targets. Based on these observations, we map and classify these TTPs using the following descriptions:

  • LLM-informed reconnaissance: Engaging LLMs to research and understand specific technologies, platforms, and vulnerabilities, indicative of preliminary information-gathering stages.
  • LLM-enhanced scripting techniques: Utilizing LLMs to generate and refine scripts, potentially to streamline and automate complex cyber tasks and operations.
  • LLM-supported social engineering: Leveraging LLMs for assistance with translations and communication, likely to establish connections or manipulate targets.
  • LLM-refined operational command techniques: Utilizing LLMs for advanced commands, deeper system access, and control representative of post-compromise behavior.

All associated accounts and assets of Charcoal Typhoon have been disabled, reaffirming our commitment to safeguarding against the misuse of AI technologies.

Salmon Typhoon

Salmon Typhoon (SODIUM) is a sophisticated Chinese state-affiliated threat actor with a history of targeting US defense contractors, government agencies, and entities within the cryptographic technology sector. This threat actor has demonstrated its capabilities through the deployment of malware, such as Win32/Wkysol, to maintain remote access to compromised systems. With over a decade of operations marked by intermittent periods of dormancy and resurgence, Salmon Typhoon has recently shown renewed activity. Salmon Typhoon overlaps with the threat actor tracked by other researchers as APT4 and Maverick Panda.

Notably, Salmon Typhoon’s interactions with LLMs throughout 2023 appear exploratory and suggest that this threat actor is evaluating the effectiveness of LLMs in sourcing information on potentially sensitive topics, high profile individuals, regional geopolitics, US influence, and internal affairs. This tentative engagement with LLMs could reflect both a broadening of their intelligence-gathering toolkit and an experimental phase in assessing the capabilities of emerging technologies.

Based on these observations, we map and classify these TTPs using the following descriptions:

  • LLM-informed reconnaissance: Engaging LLMs for queries on a diverse array of subjects, such as global intelligence agencies, domestic concerns, notable individuals, cybersecurity matters, topics of strategic interest, and various threat actors. These interactions mirror the use of a search engine for public domain research.
  • LLM-enhanced scripting techniques: Using LLMs to identify and resolve coding errors. Requests for support in developing code with potential malicious intent were observed by Microsoft, and it was noted that the model adhered to established ethical guidelines, declining to provide such assistance.
  • LLM-refined operational command techniques: Demonstrating an interest in specific file types and concealment tactics within operating systems, indicative of an effort to refine operational command execution.
  • LLM-aided technical translation and explanation: Leveraging LLMs for the translation of computing terms and technical papers.

Salmon Typhoon’s engagement with LLMs aligns with patterns observed by Microsoft, reflecting traditional behaviors in a new technological arena. In response, all accounts and assets associated with Salmon Typhoon have been disabled.

In closing, AI technologies will continue to evolve and be studied by various threat actors. Microsoft will continue to track threat actors and malicious activity misusing LLMs, and work with OpenAI and other partners to share intelligence, improve protections for customers and aid the broader security community.

Appendix: LLM-themed TTPs

Using insights from our analysis above, as well as other potential misuse of AI, we’re sharing the below list of LLM-themed TTPs that we map and classify to the MITRE ATT&CK® framework or MITRE ATLAS™ knowledgebase to equip the community with a common taxonomy to collectively track malicious use of LLMs and create countermeasures against:

  • LLM-informed reconnaissance: Employing LLMs to gather actionable intelligence on technologies and potential vulnerabilities.
  • LLM-enhanced scripting techniques: Utilizing LLMs to generate or refine scripts that could be used in cyberattacks, or for basic scripting tasks such as programmatically identifying certain user events on a system and assistance with troubleshooting and understanding various web technologies.
  • LLM-aided development: Utilizing LLMs in the development lifecycle of tools and programs, including those with malicious intent, such as malware.
  • LLM-supported social engineering: Leveraging LLMs for assistance with translations and communication, likely to establish connections or manipulate targets.
  • LLM-assisted vulnerability research: Using LLMs to understand and identify potential vulnerabilities in software and systems, which could be targeted for exploitation.
  • LLM-optimized payload crafting: Using LLMs to assist in creating and refining payloads for deployment in cyberattacks.
  • LLM-enhanced anomaly detection evasion: Leveraging LLMs to develop methods that help malicious activities blend in with normal behavior or traffic to evade detection systems.
  • LLM-directed security feature bypass: Using LLMs to find ways to circumvent security features, such as two-factor authentication, CAPTCHA, or other access controls.
  • LLM-advised resource development: Using LLMs in tool development, tool modifications, and strategic operational planning.

Learn more

Read the sixth edition of Cyber Signals, spotlighting how we are protecting AI platforms from emerging threats related to nation-state cyberthreat actors: Navigating cyberthreats and strengthening defenses in the era of AI.

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on LinkedIn at https://www.linkedin.com/showcase/microsoft-threat-intelligence, and on X (formerly Twitter) at https://twitter.com/MsftSecIntel.

To hear stories and insights from the Microsoft Threat Intelligence community about the ever-evolving threat landscape, listen to the Microsoft Threat Intelligence podcast: https://thecyberwire.com/podcasts/microsoft-threat-intelligence.

The post Staying ahead of threat actors in the age of AI appeared first on Microsoft Security Blog.

]]>
Midnight Blizzard: Guidance for responders on nation-state attack http://approjects.co.za/?big=en-us/security/blog/2024/01/25/midnight-blizzard-guidance-for-responders-on-nation-state-attack/ Fri, 26 Jan 2024 00:00:00 +0000 The Microsoft security team detected a nation-state attack on our corporate systems on January 12, 2024, and immediately activated our response process to investigate, disrupt malicious activity, mitigate the attack, and deny the threat actor further access. The Microsoft Threat Intelligence investigation identified the threat actor as Midnight Blizzard, the Russian state-sponsored actor also known as NOBELIUM.

The post Midnight Blizzard: Guidance for responders on nation-state attack appeared first on Microsoft Security Blog.

]]>
The Microsoft security team detected a nation-state attack on our corporate systems on January 12, 2024, and immediately activated our response process to investigate, disrupt malicious activity, mitigate the attack, and deny the threat actor further access. The Microsoft Threat Intelligence investigation identified the threat actor as Midnight Blizzard, the Russian state-sponsored actor also known as NOBELIUM. The latest information from the Microsoft Security and Response Center (MSRC) is posted here.

As stated in the MSRC blog, given the reality of threat actors that are well resourced and funded by nation states, we are shifting the balance we need to strike between security and business risk – the traditional sort of calculus is simply no longer sufficient. For Microsoft, this incident has highlighted the urgent need to move even faster.

If the same team were to deploy the legacy tenant today, mandatory Microsoft policy and workflows would ensure MFA and our active protections are enabled to comply with current policies and guidance, resulting in better protection against these sorts of attacks.

Microsoft was able to identify these attacks in log data by reviewing Exchange Web Services (EWS) activity and using our audit logging features, combined with our extensive knowledge of Midnight Blizzard. In this blog, we provide more details on Midnight Blizzard, our preliminary and ongoing analysis of the techniques they used, and how you may use this information pragmatically to protect, detect, and respond to similar threats in your own environment.

Using the information gained from Microsoft’s investigation into Midnight Blizzard, Microsoft Threat Intelligence has identified that the same actor has been targeting other organizations and, as part of our usual notification processes, we have begun notifying these targeted organizations.

It’s important to note that this investigation is still ongoing, and we will continue to provide details as appropriate.

Midnight Blizzard

Midnight Blizzard (also known as NOBELIUM) is a Russia-based threat actor attributed by the US and UK governments as the Foreign Intelligence Service of the Russian Federation, also known as the SVR. This threat actor is known to primarily target governments, diplomatic entities, non-governmental organizations (NGOs) and IT service providers, primarily in the US and Europe. Their focus is to collect intelligence through longstanding and dedicated espionage of foreign interests that can be traced to early 2018. Their operations often involve compromise of valid accounts and, in some highly targeted cases, advanced techniques to compromise authentication mechanisms within an organization to expand access and evade detection.

Midnight Blizzard is consistent and persistent in their operational targeting, and their objectives rarely change. Midnight Blizzard’s espionage and intelligence gathering activities leverage a variety of initial access, lateral movement, and persistence techniques to collect information in support of Russian foreign policy interests. They utilize diverse initial access methods ranging from stolen credentials to supply chain attacks, exploitation of on-premises environments to laterally move to the cloud, and exploitation of service providers’ trust chain to gain access to downstream customers. Midnight Blizzard is also adept at identifying and abusing OAuth applications to move laterally across cloud environments and for post-compromise activity, such as email collection. OAuth is an open standard for token-based authentication and authorization that enables applications to get access to data and resources based on permissions set by a user.

Midnight Blizzard is tracked by partner security vendors as APT29, UNC2452, and Cozy Bear.

Midnight Blizzard observed activity and techniques

Initial access through password spray

Midnight Blizzard utilized password spray attacks that successfully compromised a legacy, non-production test tenant account that did not have multifactor authentication (MFA) enabled. In a password-spray attack, the adversary attempts to sign into a large volume of accounts using a small subset of the most popular or most likely passwords. In this observed Midnight Blizzard activity, the actor tailored their password spray attacks to a limited number of accounts, using a low number of attempts to evade detection and avoid account blocks based on the volume of failures. In addition, as we explain in more detail below, the threat actor further reduced the likelihood of discovery by launching these attacks from a distributed residential proxy infrastructure. These evasion techniques helped ensure the actor obfuscated their activity and could persist the attack over time until successful.

Malicious use of OAuth applications

Threat actors like Midnight Blizzard compromise user accounts to create, modify, and grant high permissions to OAuth applications that they can misuse to hide malicious activity. The misuse of OAuth also enables threat actors to maintain access to applications, even if they lose access to the initially compromised account. Midnight Blizzard leveraged their initial access to identify and compromise a legacy test OAuth application that had elevated access to the Microsoft corporate environment. The actor created additional malicious OAuth applications. They created a new user account to grant consent in the Microsoft corporate environment to the actor controlled malicious OAuth applications. The threat actor then used the legacy test OAuth application to grant them the Office 365 Exchange Online full_access_as_app role, which allows access to mailboxes.

Collection via Exchange Web Services

Midnight Blizzard leveraged these malicious OAuth applications to authenticate to Microsoft Exchange Online and target Microsoft corporate email accounts.

Use of residential proxy infrastructure

As part of their multiple attempts to obfuscate the source of their attack, Midnight Blizzard used residential proxy networks, routing their traffic through a vast number of IP addresses that are also used by legitimate users, to interact with the compromised tenant and, subsequently, with Exchange Online. While not a new technique, Midnight Blizzard’s use of residential proxies to obfuscate connections makes traditional indicators of compromise (IOC)-based detection infeasible due to the high changeover rate of IP addresses.

Defense and protection guidance

Due to the heavy use of proxy infrastructure with a high changeover rate, searching for traditional IOCs, such as infrastructure IP addresses, is not sufficient to detect this type of Midnight Blizzard activity. Instead, Microsoft recommends the following guidance to detect and help reduce the risk of this type of threat:

Defend against malicious OAuth applications

  • Audit the current privilege level of all identities, users, service principals, and Microsoft Graph Data Connect applications (use the Microsoft Graph Data Connect authorization portal), to understand which identities are highly privileged. Privilege should be scrutinized more closely if it belongs to an unknown identity, is attached to identities that are no longer in use, or is not fit for purpose. Identities can often be granted privilege over and above what is required. Defenders should pay attention to apps with app-only permissions as those apps may have over-privileged access. Additional guidance for investigating compromised and malicious applications.
  • Audit identities that hold ApplicationImpersonation privileges in Exchange Online. ApplicationImpersonation allows a caller, such as a service principal, to impersonate a user and perform the same operations that the user themselves could perform. Impersonation privileges like this can be configured for services that interact with a mailbox on a user’s behalf, such as video conferencing or CRM systems. If misconfigured, or not scoped appropriately, these identities can have broad access to all mailboxes in an environment. Permissions can be reviewed in the Exchange Online Admin Center, or via PowerShell:
Get-ManagementRoleAssignment -Role ApplicationImpersonation -GetEffectiveUsers
  • Identify malicious OAuth apps using anomaly detection policies. Detect malicious OAuth apps that make sensitive Exchange Online administrative activities through App governance. Investigate and remediate any risky OAuth apps.
  • Implement conditional access app control for users connecting from unmanaged devices.
  • Midnight Blizzard has also been known to abuse OAuth applications in past attacks against other organizations using the EWS.AccessAsUser.All Microsoft Graph API role or the Exchange Online ApplicationImpersonation role to enable access to email. Defenders should review any applications that hold EWS.AccessAsUser.All and EWS.full_access_as_app permissions and understand whether they are still required in your tenant. If they are no longer required, they should be removed.
  • If you require applications to access mailboxes, granular and scalable access can be implemented using role-based access control for applications in Exchange Online. This access model ensures applications are only granted to the specific mailboxes required.

Protect against password spray attacks

Detection and hunting guidance

By reviewing Exchange Web Services (EWS) activity, combined with our extensive knowledge of Midnight Blizzard, we were able to identify these attacks in log data. We are sharing some of the same hunting methodologies here to help other defenders detect and investigate similar attack tactics and techniques, if leveraged against their organizations. The audit logging that Microsoft investigators used to discover this activity was also made available to a broader set of Microsoft customers last year.

Identity alerts and protection

Microsoft Entra ID Protection has several relevant detections that help organizations identify these techniques or additional activity that may indicate anomalous activity that needs to be investigated. The use of residential proxy network infrastructure by threat actors is generally more likely to generate Microsoft Entra ID Protection alerts due to inconsistencies in patterns of user behavior compared to legitimate activity (such as location, diversity of IP addresses, etc.) that may be beyond the control of the threat actor.

The following Microsoft Entra ID Protection alerts can help indicate threat activity associated with this attack:

  • Unfamiliar sign-in properties – This alert flags sign-ins from networks, devices, and locations that are unfamiliar to the user.
  • Password spray – A password spray attack is where multiple usernames are attacked using common passwords in a unified brute force manner to gain unauthorized access. This risk detection is triggered when a password spray attack has been successfully performed. For example, the attacker has successfully authenticated in the detected instance.
  • Threat intelligence – This alert indicates user activity that is unusual for the user or consistent with known attack patterns. This detection is based on Microsoft’s internal and external threat intelligence sources.
  • Suspicious sign-ins (workload identities) – This alert indicates sign-in properties or patterns that are unusual for the related service principal.

XDR and SIEM alerts and protection

Once an actor decides to use OAuth applications in their attack, a variety of follow-on activities can be identified in alerts to help organizations identify and investigate suspicious activity.

The following built-in Microsoft Defender for Cloud Apps alerts are automatically triggered and can help indicate associated threat activity:

  • App with application-only permissions accessing numerous emails – A multi-tenant cloud app with application-only permissions showed a significant increase in calls to the Exchange Web Services API specific to email enumeration and collection. The app might be involved in accessing and retrieving sensitive email data.
  • Increase in app API calls to EWS after a credential update – This detection generates alerts for non-Microsoft OAuth apps where the app shows a significant increase in calls to Exchange Web Services API within a few days after its certificates/secrets are updated or new credentials are added.
  • Increase in app API calls to EWS – This detection generates alerts for non-Microsoft OAuth apps that exhibit a significant increase in calls to the Exchange Web Serves  API. This app might be involved in data exfiltration or other attempts to access and retrieve data.
  • App metadata associated with suspicious mal-related activity – This detection generates alerts for non-Microsoft OAuth apps with metadata, such as name, URL, or publisher, that had previously been observed in apps with suspicious mail-related activity. This app might be part of an attack campaign and might be involved in exfiltration of sensitive information.
  • Suspicious user created an OAuth app that accessed mailbox items – A user that previously signed on to a medium- or high-risk session created an OAuth application that was used to access a mailbox using sync operation or multiple email messages using bind operation. An attacker might have compromised a user account to gain access to organizational resources for further attacks.

The following Microsoft Defender XDR alert can indicate associated activity:

  • Suspicious user created an OAuth app that accessed mailbox items – A user who previously signed in to a medium- or high-risk session created an OAuth application that was used to access a mailbox using sync operation or multiple email messages using bind operation. An attacker might have compromised a user account to gain access to organizational resources for further attacks.

February 5, 2024 update: A query that was not working for all customers has been removed.

Microsoft Defender XDR customers can run the following query to find related activity in their networks:

  • Find MailItemsAccessed or SaaS actions performed by a labeled password spray IP
CloudAppEvents 
| where Timestamp between (startTime .. endTime) 
| where isnotempty(IPTags) and not(IPTags has_any('Azure','Internal Network IP','branch office')) 
| where IPTags has_any ("Brute force attacker", "Password spray attacker", "malicious", "Possible Hackers") 

Microsoft Sentinel customers can use the following analytic rules to find related activity in their network.

  • Password spray attempts – This query helps identify evidence of password spray activity against Microsoft Entra ID applications.
  • OAuth application being granted full_access_as_app permission – This detection looks for the full_access_as_app permission being granted to an OAuth application with Admin Consent. This permission provides access to Exchange mailboxes via the EWS API and could be exploited to access sensitive data. The application granted this permission should be reviewed to ensure that it is necessary for the application’s function.
  • Addition of services principal/user with elevated permissions – This rule looks for a service principal being granted permissions that could be used to add a Microsoft Entra ID object or user account to an Admin directory role.
  • Offline access via OAuth for previously unknown Azure application – This rule alerts when a user consents to provide a previously unknown Azure application with offline access via OAuth. Offline access will provide the Azure app with access to the resources without requiring two-factor authentication. Consent to applications with offline access should generally be rare.

Microsoft Sentinel customers can also use this hunting query:

Learn more

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

Microsoft customers can use the following reports in Microsoft Defender Threat Intelligence to get the most up-to-date information about the threat actor, malicious activity, and techniques discussed in this blog. These reports provide the intelligence, protection information, and recommended actions to prevent, mitigate, or respond to associated threats found in customer environments:

February 13, 2024 minor update: Updated guidance in “Defend against malicious OAuth applications” section with clearer wording and links to additional resources.

The post Midnight Blizzard: Guidance for responders on nation-state attack appeared first on Microsoft Security Blog.

]]>
Star Blizzard increases sophistication and evasion in ongoing attacks http://approjects.co.za/?big=en-us/security/blog/2023/12/07/star-blizzard-increases-sophistication-and-evasion-in-ongoing-attacks/ Thu, 07 Dec 2023 12:01:00 +0000 Microsoft Threat Intelligence continues to track and disrupt malicious activity attributed to a Russian state-sponsored actor we track as Star Blizzard, who has continuously improved their detection evasion capabilities while remaining focused on email credential theft against targets.

The post Star Blizzard increases sophistication and evasion in ongoing attacks appeared first on Microsoft Security Blog.

]]>

January 2025 update – In mid-November 2024, Star Blizzard was observed shifting their tactics, techniques, and procedures (TTPs), likely in response to the exposure of their TTPs by Microsoft Threat Intelligence and other organizations. Learn more about our observations and findings in this Microsoft Threat Intelligence blog post: New Star Blizzard spear-phishing campaign targets WhatsApp accounts.

October 2024 update – Microsoft’s Digital Crimes Unit (DCU) is disrupting the technical infrastructure used by Star Blizzard. We have updated this blog with the latest observed Star Blizzard tactics, techniques, and procedures (TTPs).

Microsoft Threat Intelligence continues to track and disrupt malicious activity attributed to a Russian nation-state actor we call Star Blizzard. Star Blizzard has continuously improved their detection evasion capabilities while remaining focused on email credential theft against the same targets. Star Blizzard, whose activities we assess to have historically supported both espionage and cyber influence objectives, continues to prolifically target individuals and organizations involved in international affairs, defense, and logistics support to Ukraine, as well as academia, information security companies, and other entities aligning with Russian state interests. Microsoft continues to refine and deploy protections against Star Blizzard’s evolving spear-phishing tactics.

Microsoft is grateful for the collaboration on investigating Star Blizzard compromises with the international cybersecurity community, including our partners at the UK National Cyber Security Centre, the US National Security Agency Cybersecurity Collaboration Center, and the US Federal Bureau of Investigation.

This blog provides updated technical information about Star Blizzard tactics, techniques, and procedures (TTPs), building on our 2022 blog as the threat actor continues to refine their tradecraft to evade detection. As with any observed nation-state actor activity, Microsoft directly notifies customers that have been targeted or compromised, providing them with the necessary information to secure their accounts.

Star Blizzard TTPs observed in 2024

Star Blizzard persistently introduces new techniques to avoid detection. These TTPs are employed for brief periods and are either modified or abandoned once they become publicly known.

Microsoft has identified the following evasive techniques used by Star Blizzard in campaigns in 2024:

  • Use of multiple registrars to register domain infrastructure
  • Use of multiple link-shortening services and legitimate websites with open redirects, to hide actor-registered domains
  • Use of altered legitimate email templates as spear-phishing lures

Using multiple registrars to register domain infrastructure

In December 2023, we highlighted that Star Blizzard was using the registrar NameCheap to register their domain infrastructure. As CitizenLab reported (August 2024), the threat actor has also used Hostinger to register domains used in the infrastructure for email credential theft.

Microsoft can confirm that in 2024 Star Blizzard transitioned from their long-standing practice of primarily using a single domain name registrar. Among the registrars seen used by Star Blizzard in 2024 are the following:

  • Hostinger
  • RealTime Register
  • GMO Internet

A list of recent domain names registered by Star Blizzard can be found at the end of this report.

Since August 2024, Star Blizzard has made substantial changes in the methods they employ to redirect targets to their virtual private server (VPS) infrastructure, on which Evilginx is installed and then used to facilitate credential theft.

In December 2023, we detailed the threat actor’s use of email marketing platforms to prevent the need to embed the actor-registered domains in their spear-phishing emails. This technique was abandoned in early 2024, with the threat actor transitioning first to hosting the initial redirector website on shared infrastructure. Since August 2024, Star Blizzard has added multiple layers of redirection to their VPS infrastructure, utilizing various link-shortening services and legitimate websites that can be used as open redirectors.

For example, in a recent spear-phishing email that was sent from an actor-controlled Outlook account, we found that the threat actor had embedded an initial link, which was created using the Microsoft 365 Safe Links into the attached PDF lure. The Safe Links URL could only be generated by sending an email between actor-controlled accounts with the link in the body. The actor then copied that generated Safe Links URL to use in their attack.   

text
Figure 1. Initial link in a spear-phishing campaign by Star Blizzard embedded in a PDF file

This link redirected to a shortened URL created using the Bitly link-shortening service, which resolved to another shortened URL created using the Cuttly link-shortening service. The second shortened URL redirected to a legitimate website, used as an open redirector, which ultimately redirected to the first actor-controlled domain.

The website mechengsys[.]net was hosted on shared infrastructure at Hostinger and performed various filtering actions until ultimately redirecting to an actor-controlled VPS installed with Evilginx, resolving the domain vidmemax[.]com.

diagram
Figure 2. Chain of redirection from initial link to the Star Blizzard-controlled domain

Use of altered legitimate email templates as spear-phishing lures

For a brief period between July and August 2024, the threat actor utilized spear-phishing lures that did not contain or redirect to PDF lures embedded with links that redirected to actor-controlled infrastructure. Instead, Star Blizzard sent targets an altered OneDrive file share notification that included a clickable link to a malicious URL. When clicked, the link would initiate redirection to actor-controlled infrastructure. We observed Star Blizzard using this approach in spear-phishing attacks against its traditional espionage targets, including individuals associated with politics and diplomacy, NGOs, and think tanks.

diagram
Figure 3. The attack chain used in Star Blizzard’s 2024 spear-phishing lure campaign

In this approach, the threat actor began by creating a new email account, usually a Proton account, intended to impersonate a trusted sender so the recipient would be more likely to open the phishing email. The actor then stored a benign PDF or Word file in a cloud file-hosting service (for example, when targeting Microsoft customers, OneDrive) and shared the file with the newly created email account. The threat actor edited the HTML of the email, changing the displayed sender name and the URL behind the “Open” button that would otherwise lead back to the OneDrive-hosted file so that it directed to the Evilginx redirector domain instead.  

Star Blizzard then sent the spear-phishing email to the target. When the “Open” button was clicked, it directed the user to the redirector domain, which, after performing filtering based on browser fingerprinting and additional methods, directed the target to an actor-controlled Virtual Private Server (VPS) with the Evilginx installation. The Evilginx server allowed Star Blizzard to perform an adversary-in-the-middle (AiTM) attack on an authentication session to an email provider, enabling the actor to receive the necessary information to perform subsequent sign-ins to the target’s email account, including the username, password, and MFA token, if MFA is used by the target.

graphical user interface, text, application
Figure 4. Star Blizzard spear-phishing lure

TTPs used in past Star Blizzard campaigns

Microsoft observed Star Blizzard using the following TTPs in campaigns before 2024, highlighting continuously evolving techniques used by the threat actor to evade detection:

  • Use of server-side scripts to prevent automated scanning of actor-controlled infrastructure
  • Use of email marketing platform services to hide true email sender addresses and obviate the need for including actor-controlled domain infrastructure in email messages
  • Use of a DNS provider to obscure the IP addresses of actor-controlled virtual private server (VPS) infrastructure. Once notified, the DNS provider took action to mitigate actor-controlled domains abusing their service.
  • Password-protected PDF lures or links to cloud-based file-sharing platforms where PDF lures are hosted
  • Shift to a more randomized domain generation algorithm (DGA) for actor-registered domains

Use of server-side scripts to prevent automated scanning

Between April 2023 and December 2023, we observed Star Blizzard gradually moving away from using hCaptcha servers as the sole initial filter to prevent automatic scanning of their Evilginx server infrastructure. Redirection was still performed by an actor-controlled server, first executing JavaScript code (titled “Collect and Send User Data”) before redirecting the browsing session to the Evilginx server.

Shortly after, in May 2023, the threat actor was observed refining the JavaScript code, resulting in an updated version (titled “Docs”), which is still in use today.

This capability collects various information from the browser performing the browsing session to the redirector server. The code contains three main functions:

  • pluginsEmpty(): This function checks if the browser has any plugins installed.
A screenshot of code for a function that checks if the browser has any plugins installed
  • isAutomationTool(): This function checks for various indicators that the page is being accessed by an automation tool (such as Selenium, PhantomJS, or Nightmare) and returns an object with information about the detected tools.
A screenshot of code for a function that checks for various indicators that the page is being accessed by an automation tool and returns an object with information about the detected tools.
  • sendToBackend(data): This function sends the data collected by isAutomationTool() to the server using a POST request. If the server returns a response, the message in the response is executed using eval().
A screenshot of code for a function that sends the data collected by isAutomationTool() to the server using a POST request.

Following the POST request, the redirector server assessed the data collected from the browser and decided whether to allow continued browser redirection.

When a good verdict is reached, the browser received a response from the redirection server, redirecting to the next stage of the chain, which is either an hCaptcha for the user to solve, or direct to the Evilginx server.

A bad verdict resulted in the receipt of an HTTP error response and no further redirection.

Screenshot of code depicting the POST request and server response
Figure 5. Content of POST request and server response using “Collect and Send User Data” JavaScript

Use of email marketing platform services

We previously observed Star Blizzard using two different services, HubSpot and MailerLite. The actor used these services to create an email campaign, which provided them with a dedicated subdomain on the service that is then used to create URLs. These URLs acted as the entry point to a redirection chain ending at actor-controlled Evilginx server infrastructure. The services also provided the user with a dedicated email address per configured email campaign, which the threat actor has been seen to use as the “From” address in their campaigns.

Most Star Blizzard HubSpot email campaigns have targeted multiple academic institutions, think tanks, and other research organizations using a common theme, aimed at obtaining their credentials for a US grants management portal. We assess that this use-case of the HubSpot mailing platform was to allow the threat actor to track large numbers of identical messages sent to multiple recipients. Note should be taken to the “Reply-to” address in these emails, which is required by the HubSpot platform to be an actual in-use account. All the sender accounts in the following examples were dedicated threat actor-controlled accounts.

Three screenshots of themed spear-phishing email headers for a US grants management portal
Figure 6. Examples of themed spear-phishing email headers

Other HubSpot campaigns have been observed using the campaign URL embedded in an attached PDF lure or directly in the email body to perform redirection to actor-controlled Evilginx server infrastructure configured for email account credential theft. We assess that in these cases, the HubSpot platform was used to remove the need for including actor-controlled domain infrastructure in the spear-phishing emails and better evade detection based on indicators of compromise (IOC).

Figure 7. Example of victim redirection chain using initial HubSpot URL

Star Blizzard’s use of the MailerLite platform is similar to the second HubSpot tactic described above, with the observed campaign URL redirecting to actor-controlled infrastructure purposed for email credential theft.

Use of a DNS provider to resolve actor-controlled domain infrastructure

In December 2022, we began to observe Star Blizzard using a domain name service (DNS) provider that also acts as a reverse proxy server to resolve actor-registered domain infrastructure. As of May 2023, most Star Blizzard registered domains associated with their redirector servers use a DNS provider to obscure the resolving IP addresses allocated to their dedicated VPS infrastructure.

We have yet to observe Star Blizzard utilizing a DNS provider to resolve domains used on Evilginx servers.

Star Blizzard has been observed sending password-protected PDF lures in an attempt to evade email security processes implemented by defenders. The threat actor usually sends the password to open the file to the targeted user in the same or a subsequent email message.

In addition to password-protecting the PDF lures themselves, the actor has been observed hosting PDF lures at a cloud storage service and sharing a password-protected link to the file in a message sent to the intended victim. While Star Blizzard frequently uses cloud storage services from all major providers (including Microsoft OneDrive), Proton Drive is predominantly chosen for this purpose.

Microsoft suspends Star Blizzard operational accounts discovered using our platform for their spear-phishing activities.

Screenshot of an example spear-phishing email with a password protecting link to Proton Drive
Figure 8. Example of spear-phishing email with password protected link to Proton Drive

Randomizing DGA for actor registered domains

Following the detailed public reporting by Recorded Future (August 2023) on detection opportunities for Star Blizzard domain registrations, we have observed the threat actor making significant changes in their chosen domain naming syntax.

Prior to the public reporting, Star Blizzard utilized a limited wordlist for their DGA. Subsequently, Microsoft has observed that the threat actor has upgraded their domain-generating mechanism to include a more randomized list of words.

Despite the increased randomization, Microsoft has identified detection opportunities based on the following constant patterns in Star Blizzard domain registration behavior:

  • Namecheap remains the registrar of choice
  • Domains are usually registered in groups, many times with similar naming conventions
  • X.509 TLS certificates are provided by Let’s Encrypt, created in the same timeframe of domain registration
Examples of two X.509 TLS certificates used by the threat actor
Figure 9. Examples of X.509 TLS certificates used by Star Blizzard

A list of recent domain names registered by Star Blizzard can be found at the end of this report.

Consistent TTPs since 2022

Star Blizzard activities remain focused on email credential theft, predominantly targeting cloud-based email providers that host organizational and/or personal email accounts.

Star Blizzard continues to utilize the publicly available Evilginx framework to achieve their objective, with the initial access vector remaining to be spear-phishing via email. Target redirection to the threat actor’s Evilginx server infrastructure is still usually achieved using custom-built PDF lures that open a browser session. This session follows a redirection chain ending at actor-controlled Evilginx infrastructure that is configured with a “phishlet” for the intended targets’ email provider.

Star Blizzard remains constant in their use of pairs of dedicated VPSs to host actor-controlled infrastructure (redirector + Evilginx servers) used for spear-phishing activities, where each server usually hosts a separate actor registered domain.

Dgram displaying the redirection chain from PDF spear-phishing lure, to the actor-controlled VPS hosting redirection server, to the actor-controlled VPS hosting Evilginx server.
Figure 10. Typical Star Blizzard redirection chain to Evilginx infrastructure

Protecting yourself against Star Blizzard

As with all threat actors that focus on phishing or spear-phishing to gain initial access to victim mailboxes, individual email users should be aware of who these attacks target and what they look like to improve their ability to identify and avoid further attacks.

The following are a list of answers to questions that enterprise and consumer email users should be asking about the threat from Star Blizzard:

Am I at risk of being a Star Blizzard target?

Users and organizations are more likely to be a potential Star Blizzard target if connected to the following areas:

  1. Government or diplomacy (both incumbent and former position holders).
  2. Research into defense policy or international relations when related to Russia.
  3. Assistance to Ukraine related to the ongoing conflict with Russia.

Remember that Star Blizzard targets both consumer and enterprise accounts, so there is an equal threat to both organization and personal accounts.

What will a Star Blizzard spear-phishing email look like?

Star Blizzard emails appear to be from a known contact that users or organizations expect to receive email from. The sender address could be from any free email provider, but special attention should be paid to emails received from Proton account senders  (@proton[.]me, @protonmail[.]com) as they are frequently used by the threat actor.

An initial email is usually sent to the target, asking them to review a document, but without any attachment or link to the document.

The threat actor will wait for a response, and following that, will send an additional message with either an attached PDF file or an embedded link, as detailed above in “Star Blizzard TTPs observed in 2024.”

If the targeted user has not completed authentication by entering their password in the offered sign-in page and/or supplied all the required factors for multifactor authentication (MFA), the threat actor does not have the capability to successfully compromise the targeted account.

Our recommendation to all email users that belong to Star Blizzard targeted sectors is to always remain vigilant when dealing with email, especially emails containing links to external resources. When in doubt, contact the person you think is sending the email using a known and previously used email address, to verify that the email was indeed sent by them.

What happens if I interact with a Star Blizzard PDF lure?

Pressing the button in a PDF lure causes the default browser to open a link embedded in the PDF file code—this is the beginning of the redirection chain. Targets will likely see a web page titled “Docs” in the initial page opened and may be presented with a CAPTCHA to solve before continuing the redirection. The browsing session will end showing a sign-in screen to the account where the spear-phishing email was received, with the targeted email already appearing in the username field.

The host domain in the web address is an actor-controlled domain (see appendix for full list), and not the expected domain of the email server or cloud service.

If multifactor authentication is configured for a targeted email account, entering a password in the displayed sign-in screen will trigger an authentication approval request. If passwordless access is configured for the targeted account, an authentication approval request is immediately received on the device chosen for receiving authentication approvals.

As long as the authentication process is not completed (a valid password is not entered and/or an authentication request is not approved), the threat actor has not compromised the account.

If the authentication process is completed, the credentials have been successfully compromised by Star Blizzard, and the threat actor has all the required details needed to immediately access the mailbox, even if multifactor authentication is enabled.

Four screenshots of what the PDF lures look like when opened, such as a CAPTCHAs or sign-in pages.
Figure 11. Examples of Star Blizzard PDF lures when opened

Recommendations

As with any observed nation-state actor activity, Microsoft directly notifies customers that have been targeted or compromised, providing them with the necessary information to secure their accounts.

Microsoft emphasizes that the following two mitigations will strengthen customers’ environments against Star Blizzard attack activity:

Microsoft is sharing indicators of compromise related to this attack at the end of this report to encourage the security community to further investigate for potential signs of Star Blizzard activity using their security solution of choice. All these indicators have been incorporated into the threat intelligence feed that powers Microsoft Defender products to aid in protecting customers and mitigating this threat. If your organization is a Microsoft Defender for Office customer or a Microsoft Defender for Endpoint customer with network protection turned on, no further action is required to mitigate this threat presently. A thorough investigation should be performed to understand potential historical impact if Star Blizzard activity has been previously alerted on in the environment.

Additionally, Microsoft recommends the following mitigations to reduce the impact of this threat:

  • Use advanced anti-phishing solutions like Microsoft Defender for Office 365 that monitor and scan incoming emails and visited websites. For example, organizations can leverage web browsers that automatically identify and block malicious websites and provide solutions that detect and block malicious emails, links, and files.
  • Run endpoint detection and response (EDR) in block mode so that Microsoft Defender for Endpoint can block malicious artifacts, even when your non-Microsoft antivirus does not detect the threat, or when Microsoft Defender Antivirus is running in passive mode. EDR in block mode works behind the scenes to remediate malicious artifacts that are detected post-compromise.
  • Configure investigation and remediation in full automated mode to allow Microsoft Defender for Endpoint to take immediate action on alerts to resolve breaches, significantly reducing alert volume.
  • Turn on cloud-delivered protection and automatic sample submission in Microsoft Defender Antivirus to cover rapidly evolving attacker tools, techniques, and behaviors. These capabilities use artificial intelligence and machine learning to quickly identify and stop new and unknown threats.
  • Use  security defaults as a baseline set of policies to improve identity security posture. For more granular control, enable conditional access policies.  Conditional access policies evaluate sign-in requests using additional identity driven signals like user or group membership, IP location information, and device status, among others, and are enforced for suspicious sign-ins. Organizations can protect themselves from attacks that leverage stolen credentials by enabling policies such as compliant devices or trusted IP address requirements.
  • Implement continuous access evaluation.
  • Continuously monitor suspicious or anomalous activities. Investigate sign-in attempts with suspicious characteristics (for example, location, ISP, user agent, and use of anonymizer services).
  • Configure Microsoft Defender for Office 365 to recheck links on click. Safe Links provides URL scanning and rewriting of inbound email messages in mail flow, and time-of-click verification of URLs and links in email messages, other Office 365 applications such as Teams, and other locations such as SharePoint Online. Safe Links scanning occurs in addition to the regular anti-spam and anti-malware protection in inbound email messages in Exchange Online Protection (EOP). Safe Links scanning can help protect your organization from malicious links that are used in phishing and other attacks.
  • Use the Attack Simulator in Microsoft Defender for Office 365 to organize realistic, yet safe, simulated phishing and password attack campaigns in your organization by training end users against clicking URLs in unsolicited messages and disclosing their credentials. Training should include checking for poor spelling and grammar in phishing emails or the application’s consent screen as well as spoofed app names, logos, and domain URLs appearing to originate from legitimate applications or companies. Note that Attack Simulator testing only supports phishing emails containing links at this time.
  • Encourage users to use Microsoft Edge and other web browsers that support Microsoft Defender SmartScreen, which identifies and blocks malicious websites, including phishing sites, scam sites, and sites that contain exploits and host malware. In all web protection scenarios, SmartScreen and Network Protection can be used together to ensure protection across both Microsoft and non-Microsoft browsers and processes.
  • Microsoft Defender customers can turn on attack surface reduction rules to prevent common attack techniques:

Appendix

Microsoft Defender XDR detections

Microsoft Defender for Office 365

Microsoft Defender for Office 365 offers enhanced solutions for blocking and identifying malicious emails. Signals from Microsoft Defender for Office 365 inform Microsoft 365 Defender, which correlate cross-domain threat intelligence to deliver coordinated defense, when this threat has been detected. These alerts, however, can be triggered by unrelated threat activity. Example alerts:

  • A potentially malicious URL click was detected
  • Email messages containing malicious URL removed after delivery
  • Email messages removed after delivery
  • Email reported by user as malware or phish

Microsoft Defender SmartScreen

Microsoft Defender SmartScreen has implemented detections against the phishing domains represented in the IOC section below. By enabling Network protection, organizations can block attempts to connect to these malicious domains.

Microsoft Defender for Endpoint

Aside from the Microsoft Defender for Office 365 alerts above, customers can also monitor for the following Microsoft Defender for Endpoint alerts for this attack. Note that these alerts can also be triggered by unrelated threat activity. Example alerts:

  • Star Blizzard activity group
  • Suspicious URL clicked
  • Suspicious URL opened in web browser
  • User accessed link in ZAP-quarantined email
  • Suspicious activity linked to a Russian state-sponsored threat actor has been detected
  • Connection to adversary-in-the-middle (AiTM) phishing site
  • User compromised in AiTM phishing attack
  • Possible AiTM phishing attempt

Threat intelligence reports

Microsoft customers can use the following reports in Microsoft products to get the most up-to-date information about the threat actor, malicious activity, and techniques discussed in this blog. These reports provide the intelligence, protection information, and recommended actions to prevent, mitigate, and respond to associated threats found in customer environments.

Microsoft Defender Threat Intelligence

Microsoft Defender for Endpoint Threat analytics 

Hunting queries  

Microsoft Sentinel 

Microsoft Sentinel customers can use the TI Mapping analytics (a series of analytics all prefixed with ‘TI map’) to automatically match the malicious domain indicators mentioned in this blog post with data in their workspace. If the TI Map analytics are not currently deployed, customers can install the Threat Intelligence solution from the Microsoft Sentinel Content Hub to have the analytics rule deployed in their Sentinel workspace.  

Indicators of compromise

Domain infrastructure observed in 2024

Domain nameRegistrarRegistered
confsendlist[.]orgHostinger UAB2024/08/27 18:31
asyncmainfunc[.]netHostinger UAB2024/08/27 17:52
postpackfull[.]comRealtime Register2024/08/27 17:26
bootsgatein[.]netHostinger UAB2024/08/27 16:36
getshowprofile[.]comRealtime Register2024/08/27 15:11
universalindospices[.]comRealtime Register2024/08/26 16:00
nucleareng[.]netHostinger UAB2024/08/22 16:48
embriodev[.]orgHostinger UAB2024/08/22 12:36
compmatheng[.]comEranet International 2024/08/21 13:52
biomechsys[.]orgPublicDomainRegistry2024/08/21 13:02
abstractalg[.]comHostinger UAB2024/08/21 11:54
epidemioeng[.]orgHostinger UAB2024/08/21 11:44
entomoleng[.]orgPublicDomainRegistry2024/08/19 13:52
firewalliot[.]orgHostinger UAB2024/08/16 14:28
vidmemax[.]comHostinger UAB2024/08/16 09:22
authadm[.]toolsPublicDomainRegistry2024/08/15 21:35
opiloans[.]comGMO Internet2024/08/15 03:45
steeldartpro[.]comGMO Internet2024/08/15 01:09
mechengsys[.]netTucows2024/08/08 15:53
poortruncselector[.]comHostinger UAB2024/08/01 17:36
keyvaluepassin[.]netHostinger UAB2024/08/01 16:40
aeromechelec[.]orgHostinger UAB2024/07/25 13:46
quantumspherebyteonline[.]orgHostinger UAB2024/07/22 13:49
bittechxeondynamics[.]orgHostinger UAB2024/07/22 11:34
synchrosphere[.]orgHostinger UAB2024/07/19 17:52
quantumnyx[.]orgHostinger UAB2024/07/19 16:12
introsavemsg[.]orgHostinger UAB2024/07/11 18:20
grepfileintro[.]netHostinger UAB2024/07/11 16:53
innotechhub[.]netHostinger UAB2024/07/09 17:44
nextgenprotocol[.]orgHostinger UAB2024/07/09 16:57
cyberwaytransfer[.]netHostinger UAB2024/07/09 15:55
dentalmag[.]orgHostinger UAB2024/07/08 17:41
eichenfass[.]orgHostinger UAB2024/07/08 16:18
loyaltyfirst[.]orgHostinger UAB2024/07/05 18:02
investfix[.]orgHostinger UAB2024/07/03 15:36
spurcapitalconstruction[.]comHostinger UAB2024/06/29 09:45
nutritivoybarato[.]comHostinger UAB2024/06/29 07:56
crestwoodtok[.]comHostinger UAB2024/06/28 17:29
accountingempowered[.]comHostinger UAB2024/06/28 08:53
iinguinalhernia[.]comHostinger UAB2024/06/28 06:03
absardeiracargo[.]comHostinger UAB2024/06/27 18:18
destelloideal[.]comHostinger UAB2024/06/27 14:33
dontezandkrisselm[.]comHostinger UAB2024/06/27 11:45
jeredutech[.]comHostinger UAB2024/06/26 16:52
mettezera[.]comHostinger UAB2024/06/26 16:33
btxfirewood[.]comHostinger UAB2024/06/26 14:34
equipemyr[.]comHostinger UAB2024/06/25 16:13
vizionviews[.]comHostinger UAB2024/06/25 08:03
alonaservices[.]comHostinger UAB2024/06/24 19:08
getvfsmartwatch[.]comHostinger UAB2024/06/22 13:43
cellvariedades[.]comHostinger UAB2024/06/21 16:55
mashelterssettlement[.]comHostinger UAB2024/06/20 17:59
specialdiskount[.]comHostinger UAB2024/06/19 17:07
sinatagotasbrasil[.]comHostinger UAB2024/06/19 10:53
yorkviewstating[.]comHostinger UAB2024/06/19 09:12
supermercadolagocalima[.]comHostinger UAB2024/06/18 15:11
arsenalcaption[.]comHostinger UAB2024/06/15 20:02
carpenterkari[.]comPublicDomainRegistry2024/06/12 13:58
spandvi[.]comHostinger UAB2024/06/11 18:10
cucudor[.]comHostinger UAB2024/06/11 16:16
animalmedic[.]orgHostinger UAB2024/06/11 15:07
movercon[.]comHostinger UAB2024/06/07 13:11
crafflights[.]comHostinger UAB2024/06/06 16:14
pilotsheikh[.]comHostinger UAB2024/06/06 10:37
smlancer[.]comHostinger UAB2024/06/06 09:27
casioakocustom[.]comHostinger UAB2024/06/05 15:24
prismhavenphotography[.]comHostinger UAB2024/06/04 19:12
diananithilamills[.]comHostinger UAB2024/06/04 15:45
egenre[.]netHostinger UAB2024/05/19 16:20
cityessentials[.]netHostinger UAB2024/05/19 15:30
esestacey[.]netHostinger UAB2024/05/19 14:33
seltinger[.]comPublicDomainRegistry2024/05/16 20:54
livonereg[.]comPublicDomainRegistry2024/05/16 20:54
gothicshop[.]orgHostinger UAB2024/05/07 13:14
directic[.]netNameCheap2024/04/25 16:49
sgmods[.]netNameCheap2024/04/25 14:39
calmlion[.]orgNameCheap2024/04/18 13:11
mayquarkesthetic[.]comHostinger UAB2024/04/08 17:00
xacshop[.]comHostinger UAB2024/04/08 13:50
prostrokes[.]netNameCheap2024/03/29 13:34
imgrich[.]comHostinger UAB2024/03/15 14:56
editablezoom[.]orgHostinger UAB2024/03/15 13:33

Past Star Blizzard domain infrastructure

DomainRegisteredRegistrarX.509 TLS Certificate IssuerDNS provider resolving
centralitdef[.]com2023/04/03 14:29:33NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
rootgatewayshome[.]com2023/04/06 16:09:06NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
directstoragepro[.]com2023/04/07 14:18:19NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
infocryptoweb[.]com2023/04/07 14:44:38NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
cloudwebstorage[.]com2023/04/09 14:13:44NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
cryptdatahub[.]com2023/04/10 10:07:44NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
datainfosecure[.]com2023/04/10 10:16:20NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
servershieldme[.]com2023/04/11 07:32:41NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
scandefinform[.]com2023/04/12 10:18:26NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
guardittech[.]com2023/04/12 13:36:33NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
storageinfohub[.]com2023/04/14 12:23:02NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
docsinfohub[.]com2023/04/14 16:24:45NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
dbasechecker[.]com2023/04/20 08:31:04NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
dbasecheck[.]com2023/04/20 08:31:04NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
gaterecord[.]com2023/04/25 14:17:14NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
directsgate[.]com2023/04/25 14:17:14NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
storageinformationsolutions[.]com2023/04/25 15:33:03NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
storagedatadirect[.]com2023/04/25 15:33:05NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
informationdoorwaycertificate[.]com2023/04/25 17:50:04NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
datagatewaydoc[.]com2023/04/25 17:50:37NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
panelittechweb[.]com2023/04/27 12:19:19NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
panelitsolution[.]com2023/04/27 12:19:19NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
keeperdocument[.]com2023/04/27 14:18:19NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
keeperdocumentgatewayhub[.]com2023/04/27 14:18:25NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
docview[.]cloud2023/05/03 06:33:44Hostinger UABC=US, O=Let’s Encrypt, CN=R3 
protectitbase[.]com2023/05/03 09:07:33NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
webcatalogpro[.]com2023/05/04 09:47:19NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
infoformdata[.]com2023/05/04 13:13:56NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
keydatastorageunit[.]com2023/05/10 09:20:39NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
docanalizergate[.]com2023/05/10 15:23:14NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
docanalizerhub[.]com2023/05/10 15:23:21NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
hubdatapage[.]com2023/05/10 16:07:31NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
skyinformdata[.]com2023/05/11 11:10:35NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
docsaccessdata[.]com2023/05/11 12:35:02NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
datacryptosafe[.]com2023/05/11 16:46:00NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
cloudsetupprofi[.]com2023/05/12 15:35:42NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
setupprofi[.]com2023/05/12 15:35:52NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
analyzedatainfo[.]com2023/05/15 15:30:04NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
infocryptodata[.]com2023/05/15 16:41:42NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
datadocsview[.]com2023/05/16 13:23:38NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
gatedocsview[.]com2023/05/16 13:23:42NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
hubinfodocs[.]com2023/05/16 13:27:07NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
proffsolution[.]com2023/05/16 14:20:42NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
proffitsolution[.]com2023/05/16 14:20:44NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
defproresults[.]com2023/05/16 14:20:49NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
greatnotifyinfo[.]com2023/05/16 14:55:49NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
topnotifydata[.]com2023/05/16 14:55:53NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
topinformdata[.]com2023/05/16 14:55:58NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
defoffresult[.]com2023/05/16 15:23:49NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
cloudinfodata[.]com2023/05/16 15:23:52NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
webpartdata[.]com2023/05/16 15:23:57NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
infostoragegate[.]com2023/05/17 14:41:37NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
wardenstoragedoorway[.]com2023/05/17 15:17:10NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
myposcheck[.]com2023/05/25 08:52:50NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
poscheckdatacenter[.]com2023/05/25 08:52:51NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
checkdatapos[.]com2023/05/25 08:52:55NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
docdatares[.]com2023/05/26 13:42:10NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
datawebhub[.]com2023/05/26 16:28:34NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
cloudithub[.]com2023/05/26 16:28:35NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
secitweb[.]com2023/05/26 16:28:39NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
documentitsolution[.]com2023/05/29 13:21:44NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
keeperinformation[.]com2023/05/29 13:21:48NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
webprodata[.]com2023/05/29 14:28:00NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
clouditprofi[.]com2023/05/29 14:28:01NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
cryptoinfostorage[.]com2023/05/29 14:34:41NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
rootinformationgateway[.]com2023/05/29 14:34:41NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
gatewaydocumentdata[.]com2023/06/01 14:49:07NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
gatewayitservices[.]com2023/06/01 14:49:17NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
infoviewerdata[.]com2023/06/01 14:59:51NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
infoviewergate[.]com2023/06/01 14:59:51NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
webitresourse[.]com2023/06/02 19:35:46NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
homedocsdata[.]com2023/06/05 16:05:54NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
homedocsview[.]com2023/06/05 16:06:10NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
webdataproceed[.]com2023/06/08 17:29:54NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
directkeeperstorage[.]com2023/06/12 15:47:55NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
gatewaykeeperinformation[.]com2023/06/12 15:48:01NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
rootgatestorage[.]com2023/06/12 16:46:02NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
documentinformationsolution[.]com2023/06/12 16:46:04NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
getclouddoc[.]com2023/06/14 10:56:38NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
statusfiles[.]com2023/06/16 09:49:55NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
webstaticdata[.]com2023/06/16 09:49:55NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
cloudwebfile[.]com2023/06/16 09:49:59NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
statuswebcert[.]com2023/06/16 10:29:57NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
nextgenexp[.]com2023/06/16 10:29:57NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
informationkeeper[.]com2023/06/16 14:48:40NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
documentgatekeeper[.]com2023/06/16 14:48:44NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
cryptogatesolution[.]com2023/06/16 15:32:31NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
rootgatewaystorage[.]com2023/06/16 15:32:34NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
infoviewstorage[.]com2023/06/22 12:34:10NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
infoconnectstorage[.]com2023/06/22 12:34:18NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
infolookstorage[.]com2023/06/22 13:53:04NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
judicialliquidators[.]com2023/06/25 11:28:05NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
safetyagencyservice[.]com2023/06/25 11:28:08NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
dynamiclnk[.]com2023/06/27 13:20:10NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
temphoster[.]com2023/06/27 13:20:10NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
documententranceintelligence[.]com2023/06/27 17:13:49NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
documentgateprotector[.]com2023/06/27 17:13:51NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
readinfodata[.]com2023/06/28 16:09:46NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
readdatainform[.]com2023/06/28 16:09:50NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
webcryptoinfo[.]com2023/06/29 12:41:50NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
storageinfodata[.]com2023/06/29 12:41:50NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
keeperdatastorage[.]com2023/07/03 17:40:16NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
keepinformationroot[.]com2023/07/03 17:40:21NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
keyservicebar[.]com2023/07/05 13:25:41PDR Ltd.C=US, O=Let’s Encrypt, CN=R3 
bitespacedev[.]com2023/07/05 13:25:43PDR Ltd.C=US, O=Let’s Encrypt, CN=R3 
cryptodocumentinformation[.]com2023/07/05 15:04:46PDR Ltd.C=US, O=Let’s Encrypt, CN=R3 
directdocumentinfo[.]com2023/07/05 15:04:48PDR Ltd.C=US, O=Let’s Encrypt, CN=R3 
techpenopen[.]com2023/07/05 15:49:13NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
loginformationbreakthrough[.]com2023/07/06 16:01:36NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
alldocssolution[.]com2023/07/06 16:01:39NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
documentkeepersolutionsystems[.]com2023/07/06 18:45:01NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
docholdersolution[.]com2023/07/06 18:45:10NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
infodocitsolution[.]com2023/07/07 11:00:59NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
securebrowssolution[.]com2023/07/07 11:00:59NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
secbrowsingate[.]com2023/07/07 11:18:09NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
secbrowsingsystems[.]com2023/07/07 11:18:14NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
docguardmaterial[.]com2023/07/10 11:38:40NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
dockeeperweb[.]com2023/07/10 11:38:44NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
docsecgate[.]com2023/07/11 13:27:59NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
documentsecsolution[.]com2023/07/11 13:28:01NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
cryptogatehomes[.]com2023/07/11 17:51:38NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
topcryptoprotect[.]com2023/07/12 13:03:36NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
safedocumentgatesolution[.]com2023/07/12 13:17:15NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
safedocitsolution[.]com2023/07/12 13:17:23NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
docscontentview[.]com2023/07/12 15:05:10NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
docscontentgate[.]com2023/07/12 15:05:10NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
openprojectgate[.]com2023/07/12 15:30:44NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
infowardendoc[.]com2023/07/12 15:30:49NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
wardensecbreakthrough[.]com2023/07/12 15:41:10NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
lawsystemjudgement[.]com2023/07/12 15:41:10NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
explorewebdata[.]com2023/07/13 08:12:07NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
doorwayseclaw[.]com2023/07/13 13:22:18NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
entryloginpoint[.]com2023/07/13 13:22:22NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
wardenlawsec[.]com2023/07/13 14:12:32NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
entrygatebreak[.]com2023/07/13 14:12:32NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
digitalworkdata[.]com2023/07/13 15:00:44NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
digitalhubdata[.]com2023/07/13 15:00:45NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
craftfilelink[.]com2023/07/13 15:31:00NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
createtempdoc[.]com2023/07/13 15:31:00NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
provideexplorer[.]com2023/07/13 16:25:33NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
reviewopenfile[.]com2023/07/13 16:25:34NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
govsafebreakthrough[.]com2023/07/13 16:26:44NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
govlawentrance[.]com2023/07/13 16:26:55NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
storagekeepdirect[.]com2023/07/13 17:36:39NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
storageguarddirect[.]com2023/07/13 17:36:44NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
storagekeeperexpress[.]com2023/07/14 13:27:26NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
onestorageprotectordirect[.]com2023/07/14 13:27:27NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
lawwardensafety[.]com2023/07/14 13:41:52NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
entrancequick[.]com2023/07/14 13:41:53NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
seclawdoorway[.]com2023/07/14 15:28:39NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
wardengovermentlaw[.]com2023/07/14 15:28:43NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
getvaluepast[.]com2023/07/14 16:14:41NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
transferlinkdata[.]com2023/07/14 16:14:41NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
remcemson[.]com2023/07/26 11:25:48NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
osixmals[.]com2023/07/26 11:25:56NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
entranceto[.]com2023/07/28 12:26:15NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
govermentsecintro[.]com2023/07/28 12:26:17NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
itbugreportbeta[.]com2023/07/28 13:06:49NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
theitbugreportbeta[.]com2023/07/28 13:06:49NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
sockintrodoorway[.]com2023/07/28 13:21:41NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
maxintrosec[.]com2023/07/28 13:21:42NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
doorgovcommunity[.]com2023/07/28 15:11:40NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
tarentrycommunity[.]com2023/07/28 15:11:40NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
webfigmadesignershop[.]com2023/07/28 16:09:07NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
webfigmadesigner[.]com2023/07/28 16:09:11NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
logincontrolway[.]com2023/07/28 16:35:44NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
vertransmitcontrol[.]com2023/07/28 16:35:44NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
everyinit[.]com2023/08/09 13:56:51NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
aliceplants[.]com2023/08/09 17:22:26NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
countingtall[.]com2023/08/09 17:22:30NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
silenceprotocol[.]com2023/08/10 12:32:10NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
mintwithapples[.]com2023/08/10 12:32:15NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
winterholds[.]com2023/08/10 12:53:29NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
ziplinetransfer[.]com2023/08/10 16:47:53NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
translatesplit[.]com2023/08/10 16:47:53NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
getfigmacreator[.]com2023/08/11 13:13:20NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
postrequestin[.]com2023/08/11 13:13:23NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
tarifjane[.]com2023/08/17 14:05:41NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
configlayers[.]com2023/08/17 14:05:48NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
winterhascometo[.]com2023/08/17 16:21:43NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
inyourheadexp[.]com2023/08/17 16:21:43NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
glorybuses[.]com2023/08/18 15:27:40NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
janeairintroduction[.]com2023/08/18 15:27:40NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
vikingonairplane[.]com2023/08/18 16:19:48NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
marungame[.]com2023/08/18 16:19:49NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
victorinwounder[.]com2023/08/21 16:14:48NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
paneindestination[.]com2023/08/21 16:15:02NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
trastamarafamily[.]com2023/08/22 11:20:22NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
territoryedit[.]com2023/08/22 11:20:24NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
vectorto[.]com2023/08/24 09:40:49NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
johnysadventure[.]com2023/08/24 09:40:54NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
paternenabler[.]com2023/08/25 14:40:31NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
fastnamegenerator[.]com2023/08/25 14:40:35NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
literallyandme[.]com2023/08/28 13:21:33NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
andysalesproject[.]com2023/08/28 13:21:34NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
pandawithrainbow[.]com2023/08/28 17:08:58NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
natalyincity[.]com2023/08/29 15:25:02NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
machinerelise[.]com2023/09/01 16:29:09NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
industrialcorptruncate[.]com2023/09/01 16:30:07NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
constructionholdingnewlife[.]com2023/09/07 14:00:55NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
adventuresrebornpanda[.]com2023/09/07 14:00:55NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
cryingpand[.]com2023/09/13 13:10:40NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
industrialwatership[.]com2023/09/13 13:10:41NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
olohaisland[.]com2023/09/13 14:25:35NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
voodoomagician[.]com2023/09/13 14:25:36NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
newestchairs[.]com2023/09/14 11:24:47NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
cpuisocutter[.]com2023/09/14 12:37:53NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
incorpcpu[.]com2023/09/14 12:37:57NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
gulperfish[.]com2023/09/14 14:00:25NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
leviathanfish[.]com2023/09/14 14:00:25NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
truncationcorp[.]com2023/09/14 14:05:41NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
gzipinteraction[.]com2023/09/14 14:05:42NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
ghostshowing[.]com2023/09/14 16:10:42NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
hallowenwitch[.]com2023/09/14 16:10:43NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
certificatentrance[.]com2023/09/19 08:18:39NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
apiwebdata[.]com2023/10/02 14:59:14NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
apidatahook[.]com2023/10/04 15:45:19NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
apireflection[.]com2023/10/04 15:45:25NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
protectionoffice[.]tech2023/10/05 11:33:46Hostinger UABC=US, O=Let’s Encrypt, CN=R3 
lazyprotype[.]com2023/10/11 11:52:18NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
angelicfish[.]com2023/10/13 17:57:29NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
globalyfish[.]com2023/10/13 17:57:31NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
medicprognosis[.]com2023/10/16 14:36:32NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
medicoutpatient[.]com2023/10/16 14:36:41NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
krakfish[.]com2023/10/17 17:09:29NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
stingrayfish[.]com2023/10/17 17:09:31NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
incorpreview[.]com2023/10/17 18:27:09NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
truncatetrim[.]com2023/10/17 18:27:11NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
corporatesinvitation[.]com2023/10/18 14:48:54NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
triminget[.]com2023/10/18 17:31:40NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
firewitches[.]com2023/10/19 10:40:51NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
solartemplar[.]com2023/10/19 10:40:52NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
encryptionrenewal[.]com2023/10/20 13:36:24NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
sslkeycert[.]com2023/10/20 13:36:24NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
barbarictruths[.]com2023/10/23 07:37:30NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
castlefranks[.]com2023/10/23 07:37:33NameCheap, IncC=US, O=Let’s Encrypt, CN=R3Yes
comintroduction[.]com2023/10/24 14:01:11NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 
corpviewer[.]com2023/10/31 13:10:38NameCheap, IncC=US, O=Let’s Encrypt, CN=R3 

Star Blizzard HubSpot campaign domains:

  • djs53104[.]eu1[.]hubspotlinksfree[.]com – used in August 2023
  • djr6t104[.]eu1[.]hubspotlinksfree[.]com – used in August 2023
  • djrzf704[.]eu1[.]hubspotlinksfree[.]com – used in August 2023
  • djskzh04[.]eu1[.]hubspotlinksfree[.]com – used in August 2023
  • djslws04[.]eu1[.]hubspotlinksfree[.]com – used in August 2023
  • djs36c04[.]eu1[.]hubspotlinksfree[.]com – used in August 2023
  • djt47x04[.]eu1[.]hubspotlinksfree[.]com – used in September 2023
  • djvcl404[.]eu1[.]hubspotlinksfree[.]com – used in October 2023
  • d5b74r04[.]na1[.]hubspotlinksfree[.]com – used in October 2023
  • djvxqp04[.]eu1[.]hubspotlinksfree[.]com – used in October 2023

Star Blizzard MailerLite campaign domain:

  • ydjjja[.]clicks[.]mlsend[.]com – used in September 2023

References

Further reading

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on X (formerly Twitter) at https://twitter.com/MsftSecIntel.

To hear stories and insights from the Microsoft Threat Intelligence community about the ever-evolving threat landscape, listen to the Microsoft Threat Intelligence podcast: https://thecyberwire.com/podcasts/microsoft-threat-intelligence.

The post Star Blizzard increases sophistication and evasion in ongoing attacks appeared first on Microsoft Security Blog.

]]>
Microsoft shares threat intelligence at CYBERWARCON 2023 http://approjects.co.za/?big=en-us/security/blog/2023/11/09/microsoft-shares-threat-intelligence-at-cyberwarcon-2023/ Thu, 09 Nov 2023 12:00:00 +0000 At the CYBERWARCON 2023 conference, Microsoft and LinkedIn analysts are presenting several sessions detailing analysis across multiple sets of threat actors and related activity, demonstrating Microsoft Threat Intelligence’s ongoing efforts to track threat actors, protect customers, and share information with the wider security community.

The post Microsoft shares threat intelligence at CYBERWARCON 2023 appeared first on Microsoft Security Blog.

]]>
At the CYBERWARCON 2023 conference, Microsoft and LinkedIn analysts are presenting several sessions detailing analysis across multiple sets of threat actors and related activity. This blog is intended to summarize the content of the research covered in these presentations and demonstrates Microsoft Threat Intelligence’s ongoing efforts to track threat actors, protect customers, and share information with the wider security community.

Reactive and opportunistic: Iran’s role in the Israel-Hamas war

This presentation compares and contrasts activity attributed to Iranian groups before and after the October 7, 2023 start of the Israel-Hamas war. It highlights a number of instances where Iranian operators leveraged existing access, infrastructure, and tooling, ostensibly to meet new objectives.

With the physical conflict approximately one month old, this analysis offers early conclusions in a rapidly evolving space, specific to observed Iranian actors, such as those linked to Iran’s Ministry of Intelligence and Security (MOIS) and Islamic Revolutionary Guard Corps (IRGC). While the presentation details attack techniques observed in specific regions, Microsoft is sharing this information to inform and help protect wider organizations around the world facing attack methods similar to those used by Iranian operators, such as social engineering methods for deceiving victims, and exploitation of vulnerable devices and sign-in credentials.

First, Microsoft does not see any evidence suggesting Iranian groups (IRGC and MOIS) had coordinated, pre-planned cyberattacks aligned to Hamas’ plans and the start of the Israel-Hamas war on October 7​. Although media and other public accounts may suggest that Iran played an active role in planning the October 7 physical attacks on Israel, Microsoft data tells a different part of the story.

Observations from Microsoft telemetry suggest that, at least in the cyber domain, Iranian operators have largely been reactive since the war began, exploiting opportunities to try and take advantage of events on the ground as they unfold​. It took 11 days from the start of the ground conflict before Microsoft saw Iran enter the war in the cyber domain. On October 18, 2023 Microsoft observed the first of two separate destructive attacks targeting infrastructure in Israel. While online personas controlled by Iran exaggerated the claims of impact from these attacks, the data suggests that both attacks were likely opportunistic in nature. Specifically, operators leveraged existing access or acquired access to the first available target. Further, the data shows that, in the case of a ransomware attack, Iranian actors’ claims of impact and precision targeting were almost certainly fabricated.

Second, Microsoft observes Iranian operators continuing to employ their tried-and-true tactics, notably exaggerating the success of their computer network attacks and amplifying those claims and activities via a well-integrated deployment of information operations. This is essentially creating online propaganda seeking to inflate the notoriety and impact of opportunistic attacks, in an effort to increase their effects. For example, Microsoft observed Iranian actors compromising connected webcams and framing the activity as more strategic, claiming they targeted and successfully compromised cameras at a specific Israeli military installation. In reality, the compromised cameras were located at scattered sites outside any one defined region. This suggests that despite Iran actors’ strategic claims, this camera example was ultimately a case of adversaries continuing to opportunistically discover and compromise vulnerable connected devices and try to reframe this routine work as more impactful in the context of the current conflict.

Third, Microsoft recognizes that, as more physical conflicts around the world spur cyber operations of varying levels of sophistication, this is a rapidly evolving space requiring close monitoring to assess potential escalations and impact on wider industries, regions, and customers. Microsoft Threat Intelligence anticipates Iranian operators will move from a reactive posture to more proactive activities the longer the current war plays out and continue to evolve their tactics in pursuit of their objectives.

The digital reality: A surge on critical infrastructure

In this presentation, Microsoft Threat Intelligence experts walk the audience through the timeline of Microsoft’s discovery of Volt Typhoon, a threat actor linked to China, and the adversary group’s activity observed against critical infrastructure and key resources in the U.S. and its territories, such as Guam. The presentation highlights some of the specific techniques, tactics, and procedures (TTPs) Volt Typhoon uses to carry out its operations. The talk features insights on how Microsoft tracked the threat actor and assessed that Volt Typhoon’s activity was consistent with laying the groundwork for use in potential future conflict situations. These insights show the backstory of threat intelligence collection and analysis, leading to Microsoft’s May 2023 blog on Volt Typhoon, sharing the actor’s reach and capabilities with the community.

At CYBERWARCON, Microsoft provides an update on Volt Typhoon activity, highlighting shifts in TTPs and targeting since Microsoft released the May blog post. Specifically, Microsoft sees Volt Typhoon trying to improve its operational security and stealthily attempting to return to previously compromised victims. The threat actor is also targeting university environments, for example, in addition to previously targeted industries. In this presentation, Microsoft experts compare their Volt Typhoon analysis with third-party research and studies of China’s military doctrine and the current geopolitical climate. This adds additional context for the security community on possible motivations behind the threat actor’s current and future operations.

Microsoft also describes gaps and limitations in tracking Volt Typhoon’s activity and how the security community can work together to develop strategies to mitigate future threats from this threat actor.

“You compile me. You had me at RomCom.” – When cybercrime met espionage

For many years, the security community has watched various Russian state-aligned actors intersect with cybercrime ecosystems to varying degrees and with different purposes. At CYBERWARCON 2022, Microsoft discussed the development of a never-before-seen “ransomware” strain known as Prestige by Seashell Blizzard (IRIDIUM), a group reported to be comprised of Russian military intelligence officers. The cyberattack, disguised as a new “ransomware” strain, was meant to cause disruption while providing a thin veneer of plausible deniability for the sponsoring organization.

This year at CYBERWARCON, Microsoft experts profile a different threat actor, Storm-0978, which emerged in the early 2022 as credibly conducting both cybercrime operations, as well as espionage/enablement operations benefiting Russia’s military and other geopolitical interests, with possible ties to Russian security services. The duality of this Storm-0978 adversary’s activity intersecting with both crime and espionage leads to questions Microsoft are engaging conference attendees in exploring. Is Storm-0978 a cybercrime group conducting espionage, or a government-sponsored espionage group conducting cybercrime? Why are we seeing the confluence of what historically have been separate crime and geopolitical objectives? Is this duality in some way a reflection of Russia becoming limited in its ability to scale wartime cyber operations? Is Russia activating cybercriminal elements for operations in order to provide a level of plausible deniability for future destructive attacks? The Ukraine war has illustrated that Russia has likely had to activate other capabilities on the periphery. Storm-0978 is one probable example where it’s clear that other elements have been co-opted to achieve objectives of both a wartime environment and strategic landscape either to achieve effects-led operations or prepositioning.

Microsoft’s extensive insight on the ransomware economy and other cybercrime trends, coupled with experience tracking Russian nation-state adversaries, allows for presenting this profile of the Storm-0978 actor at CYBERWARCON, which Microsoft hopes will be further enriched and analyzed by the wider security community’s experiences, data sets and conclusions.  

A LinkedIn update on combating fake accounts

This presentation focuses on what LinkedIn’s Threat Prevention and Defense team has learned from its investigations of cyber mercenaries, also referred to as private-sector offensive actors (PSOAs), on the platform. The focus of this presentation is on Black Cube (Microsoft tracks this actor as Blue Tsunami), a well-known mercenary actor, and what we’ve learned about how they attempt to operate on LinkedIn. The discussion includes insights on how Black Cube has previously leveraged honeypot profiles, fake jobs, and fake companies to engage in reconnaissance or human intelligence (HUMINT) operations against targets with access to organizations of interest and/or concern to Black Cube’s clients.

Further reading

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on X at https://twitter.com/MsftSecIntel.

The post Microsoft shares threat intelligence at CYBERWARCON 2023 appeared first on Microsoft Security Blog.

]]>