Extortion News and Insights | Microsoft Security Blog http://approjects.co.za/?big=en-us/security/blog/tag/extortion/ Expert coverage of cybersecurity topics Wed, 03 Jul 2024 18:52:05 +0000 en-US hourly 1 https://wordpress.org/?v=6.6.2 Octo Tempest crosses boundaries to facilitate extortion, encryption, and destruction http://approjects.co.za/?big=en-us/security/blog/2023/10/25/octo-tempest-crosses-boundaries-to-facilitate-extortion-encryption-and-destruction/ Wed, 25 Oct 2023 16:30:00 +0000 Microsoft has been tracking activity related to the financially motivated threat actor Octo Tempest, whose evolving campaigns represent a growing concern for many organizations across multiple industries.

The post Octo Tempest crosses boundaries to facilitate extortion, encryption, and destruction appeared first on Microsoft Security Blog.

]]>
Microsoft has been tracking activity related to the financially motivated threat actor Octo Tempest, whose evolving campaigns represent a growing concern for organizations across multiple industries. Octo Tempest leverages broad social engineering campaigns to compromise organizations across the globe with the goal of financial extortion. With their extensive range of tactics, techniques, and procedures (TTPs), the threat actor, from our perspective, is one of the most dangerous financial criminal groups.

OCTO TEMPEST: Hybrid identity compromise recovery

Read the Microsoft Incident Response playbook

Octo Tempest is a financially motivated collective of native English-speaking threat actors known for launching wide-ranging campaigns that prominently feature adversary-in-the-middle (AiTM) techniques, social engineering, and SIM swapping capabilities. Octo Tempest, which overlaps with research associated with 0ktapus, Scattered Spider, and UNC3944, was initially seen in early 2022, targeting mobile telecommunications and business process outsourcing organizations to initiate phone number ports (also known as SIM swaps). Octo Tempest monetized their intrusions in 2022 by selling SIM swaps to other criminals and performing account takeovers of high-net-worth individuals to steal their cryptocurrency.

A graphical representation of Octo Tempest's evolution from early 2022 to mid 2023.
Figure 1. The evolution of Octo Tempest’s targeting, actions, outcomes, and monetization

Building on their initial success, Octo Tempest harnessed their experience and acquired data to progressively advance their motives, targeting, and techniques, adopting an increasingly aggressive approach. In late 2022 to early 2023, Octo Tempest expanded their targeting to include cable telecommunications, email, and technology organizations. During this period, Octo Tempest started monetizing intrusions by extorting victim organizations for data stolen during their intrusion operations and in some cases even resorting to physical threats.

In mid-2023, Octo Tempest became an affiliate of ALPHV/BlackCat, a human-operated ransomware as a service (RaaS) operation, and initial victims were extorted for data theft (with no ransomware deployment) using ALPHV Collections leak site. This is notable in that, historically, Eastern European ransomware groups refused to do business with native English-speaking criminals. By June 2023, Octo Tempest started deploying ALPHV/BlackCat ransomware payloads (both Windows and Linux versions) to victims and lately has focused their deployments primarily on VMWare ESXi servers. Octo Tempest progressively broadened the scope of industries targeted for extortion, including natural resources, gaming, hospitality, consumer products, retail, managed service providers, manufacturing, law, technology, and financial services.  

In recent campaigns, we observed Octo Tempest leverage a diverse array of TTPs to navigate complex hybrid environments, exfiltrate sensitive data, and encrypt data. Octo Tempest leverages tradecraft that many organizations don’t have in their typical threat models, such as SMS phishing, SIM swapping, and advanced social engineering techniques. This blog post aims to provide organizations with an insight into Octo Tempest’s tradecraft by detailing the fluidity of their operations and to offer organizations defensive mechanisms to thwart the highly motivated financial cybercriminal group.

Analysis 

The well-organized, prolific nature of Octo Tempest’s attacks is indicative of extensive technical depth and multiple hands-on-keyboard operators. The succeeding sections cover the wide range of TTPs we observed being used by Octo Tempest.

A graphical image summarizing the list of TTPs used by Octo Tempest as discussed in this blog post.
Figure 2. Octo Tempest TTPs

Initial access 

Social engineering with a twist

Octo Tempest commonly launches social engineering attacks targeting technical administrators, such as support and help desk personnel, who have permissions that could enable the threat actor to gain initial access to accounts. The threat actor performs research on the organization and identifies targets to effectively impersonate victims, mimicking idiolect on phone calls and understanding personal identifiable information to trick technical administrators into performing password resets and resetting multifactor authentication (MFA) methods. Octo Tempest has also been observed impersonating newly hired employees in these attempts to blend into normal on-hire processes.

Octo Tempest primarily gains initial access to an organization using one of several methods:

  • Social engineering
    • Calling an employee and socially engineering the user to either:
      • Install a Remote Monitoring and Management (RMM) utility
      • Navigate to a site configured with a fake login portal using an adversary-in-the-middle toolkit
      • Remove their FIDO2 token
    • Calling an organization’s help desk and socially engineering the help desk to reset the user’s password and/or change/add a multi-factor authentication token/factor
  • Purchasing an employee’s credentials and/or session token(s) on a criminal underground market
  • SMS phishing employee phone numbers with a link to a site configured with a fake login portal using an adversary-in-the-middle toolkit
  • Using the employee’s pre-existing access to mobile telecommunications and business process outsourcing organizations to initiate a SIM swap or to set up call number forwarding on an employee’s phone number. Octo Tempest will initiate a self-service password reset of the user’s account once they have gained control of the employee’s phone number.

In rare instances, Octo Tempest resorts to fear-mongering tactics, targeting specific individuals through phone calls and texts. These actors use personal information, such as home addresses and family names, along with physical threats to coerce victims into sharing credentials for corporate access.

Two screenshots of a phone screen presented side by side. The screens present a series of threatening text messages sent by Octo Tempest to their targets/
Figure 3. Threats sent by Octo Tempest to targets

Reconnaissance and discovery 

Crossing borders for identity, architecture, and controls enumeration

In the early stage of their attacks, Octo Tempest performs various enumeration and information gathering actions to pursue advanced access in targeted environments and abuses legitimate channels for follow-on actions later in the attack sequence. Initial bulk-export of users, groups, and device information is closely followed by enumerating data and resources readily available to the user’s profile within virtual desktop infrastructure or enterprise-hosted resources. 

Frequently, Octo Tempest uses their access to carry out broad searches across knowledge repositories to identify documents related to network architecture, employee onboarding, remote access methods, password policies, and credential vaults.

Octo Tempest then performs exploration through multi-cloud environments enumerating access and resources across cloud environments, code repositories, server and backup management infrastructure, and others. In this stage, the threat actor validates access, enumerates databases and storage containers, and plans footholds to aid further phases of the attack.

Additional tradecraft and techniques:

  • PingCastle and ADRecon to perform reconnaissance of Active Directory 
  • Advanced IP Scanner to probe victim networks
  • Govmomi Go library to enumerate vCenter APIs 
  • PureStorage FlashArray PowerShell module to enumerate storage arrays 
  • AAD bulk downloads of user, groups, and devices

Privilege escalation and credential access

Octo Tempest commonly elevates their privileges within an organization through the following techniques:

  • Using their pre-existing access to mobile telecommunications and business process outsourcing organizations to initiate a SIM swap or to set up call number forwarding on an employee’s phone number. Octo Tempest will initiate a self-service password reset of the user’s account once they have gained control of the employee’s phone number.
  • Social engineering – calling an organization’s help desk and socially engineering the help desk to reset an administrator’s password and/or change/add a multi-factor authentication token/factor

Further masquerading and collection for escalation

Octo Tempest employs an advanced social engineering strategy for privilege escalation, harnessing stolen password policy procedures, bulk downloads of user, group, and role exports, and their familiarity with the target organizations procedures. The actor’s privilege escalation tactics often rely on building trust through various means, such as leveraging possession of compromised accounts and demonstrating an understanding of the organization’s procedures. In some cases, they go as far as bypassing password reset procedures by using a compromised manager’s account to approve their requests.

Octo Tempest continually seeks to collect additional credentials across all planes of access. Using open-source tooling like Jercretz and TruffleHog, the threat actor automates the identification of plaintext keys, secrets, and credentials across code repositories for further use.

Additional tradecraft and techniques:

  • Modifying access policies or using MicroBurst to gain access to credential stores
  • Using open-source tooling: Mimikatz, Hekatomb, Lazagne, gosecretsdump, smbpasswd.py, LinPEAS, ADFSDump
  • Using VMAccess Extension to reset passwords or modify configurations of Azure VMs
  • Creating snapshots virtual domain controller disks to download and extract NTDS.dit
  • Assignment of User Access Administrator role to grant Tenant Root Group management scope

Defense evasion

Security product arsenal sabotage

Octo Tempest compromises security personnel accounts within victim organizations to turn off security products and features and attempt to evade detection throughout their compromise. Using compromised accounts, the threat actor leverages EDR and device management technologies to allow malicious tooling, deploy RMM software, remove or impair security products, data theft of sensitive files (e.g. files with credentials, signal messaging databases, etc.), and deploy malicious payloads.

To prevent identification of security product manipulation and suppress alerts or notifications of changes, Octo Tempest modifies the security staff mailbox rules to automatically delete emails from vendors that may raise the target’s suspicion of their activities.

A screenshot of the inbox rule created by Octo Tempest.
Figure 4. Inbox rule created by Octo Tempest to delete emails from vendors

Additional tradecraft and techniques:

  • Using open-source tooling like privacy.sexy framework to disable security products
  • Enrolling actor-controlled devices into device management software to bypass controls
  • Configuring trusted locations in Conditional Access Policies to expand access capabilities
  • Replaying harvested tokens with satisfied MFA claims to bypass MFA

Persistence 

Sustained intrusion with identities and open-source tools

Octo Tempest leverages publicly available security tools to establish persistence within victim organizations, largely using account manipulation techniques and implants on hosts. For identity-based persistence, Octo Tempest targets federated identity providers using tools like AADInternals to federate existing domains, or spoof legitimate domains by adding and then federating new domains. The threat actor then abuses this federation to generate forged valid security assertion markup language (SAML) tokens for any user of the target tenant with claims that have MFA satisfied, a technique known as Golden SAML. Similar techniques have also been observed using Okta as their source of truth identity provider, leveraging Okta Org2Org functionality to impersonate any desired user account.

To maintain access to endpoints, Octo Tempest installs a wide array of legitimate RMM tools and makes required network modifications to enable access. The usage of reverse shells is seen across Octo Tempest intrusions on both Windows and Linux endpoints. These reverse shells commonly initiate connections to the same attacker infrastructure that deployed the RMM tools.

A screenshot of reverse shellcode used by Octo Tempest
A screenshot of reverse shellcode used by Octo Tempest
Figure 5. Reverse shellcode used by Octo Tempest

A unique technique Octo Tempest uses is compromising VMware ESXi infrastructure, installing the open-source Linux backdoor Bedevil, and then launching VMware Python scripts to run arbitrary commands against housed virtual machines.

Additional tradecraft and techniques:

Actions on objectives

Common trifecta: Data theft, extortion, and ransomware

The goal of Octo Tempest remains financially motivated, but the monetization techniques observed across industries vary between cryptocurrency theft and data exfiltration for extortion and ransomware deployment.

Like in most cyberattacks, data theft largely depends on the data readily available to the threat actor. Octo Tempest accesses data from code repositories, large document management and storage systems, including SharePoint, SQL databases, cloud storage blobs/buckets, and email, using legitimate management clients such as DBeaver, MongoDB Compass, Azure SQL Query Editor, and Cerebrata for the purpose of connection and collection. After data harvesting, the threat actor employs anonymous file-hosting services, including GoFile.io, shz.al, StorjShare, Temp.sh, MegaSync, Paste.ee, Backblaze, and AWS S3 buckets for data exfiltration.

Octo Tempest employs a unique technique using the data movement platform Azure Data Factory and automated pipelines to extract data to external actor hosted Secure File Transfer Protocol (SFTP) servers, aiming to blend in with typical big data operations. Additionally, the threat actor commonly registers legitimate Microsoft 365 backup solutions such as Veeam, AFI Backup, and CommVault to export the contents of SharePoint document libraries and expedite data exfiltration.

Ransomware deployment closely follows data theft objectives. This activity targets both Windows and Unix/Linux endpoints and VMware hypervisors using a variant of ALPHV/BlackCat. Encryption at the hypervisor level has shown significant impact to organizations, making recovery efforts difficult post-encryption.

Octo Tempest frequently communicates with target organizations and their personnel directly after encryption to negotiate or extort the ransom—providing “proof of life” through samples of exfiltrated data. Many of these communications have been leaked publicly, causing significant reputational damage to affected organizations.

Additional tradecraft and techniques:

  • Use of the third-party services like FiveTran to extract copies of high-value service databases, such as SalesForce and ZenDesk, using API connectors
  • Exfiltration of mailbox PST files and mail forwarding to external mailboxes

Recommendations

Hunting methodology

Octo Tempest’s utilization of social engineering, living-off-the land techniques, and diverse toolsets could make hunting slightly unorthodox. Following these general guidelines alongside robust deconfliction with legitimate users will surface their activity:

Identity

  • Understand authentication flows in the environment.
  • Centralize visibility of administrative changes in the environment into a single pane of glass.
  • Scrutinize all user and sign-in risk detections for any administrator within the timeframe. Common alerts that are surfaced during an Octo Tempest intrusion include (but not limited to): Impossible Travel, Unfamiliar Sign-in Properties, and Anomalous Token
  • Review the coverage of Conditional Access policies; scrutinize the use of trusted locations and exclusions.
  • Review all existing and new custom domains in the tenant, and their federation settings.
  • Scrutinize administrator groups, roles, and privileges for recent modification.
  • Review recently created Microsoft Entra ID users and registered device identities.
  • Look for any anomalous pivots into organizational apps that may hold sensitive data, such as Microsoft SharePoint and OneDrive.

Azure

  • Leverage and continuously monitor Defender for Cloud for Azure Workloads, providing a wealth of information around unauthorized resource access.
  • Review Azure role-based access control (RBAC) definitions across the management group, subscription, resource group and resource structure.
  • Review the public network exposure of resources and revoke any unauthorized modifications.
  • Review both data plane and management plane access control for all critical workloads such as those that hold credentials and organizational data, like Key Vaults, storage accounts, and database resources.
  • Tightly control access to identity workloads that issue access organizational resources such as Active Directory Domain Controllers.
  • Review the Azure Activity log for anomalous modification of resources.

Endpoints

  • Look for recent additions to the indicators or exclusions of the EDR solution in place at the organization.
  • Review any generation of offboarding scripts.
  • Review access control within security products and EDR software suites.
  • Scrutinize any tools used to manage endpoints (SCCM, Intune, etc.) and look for recent rule additions, packages, or deployments.
  • Scrutinize use of remote administration tools across the environment, paying particular attention to recent installations regardless of whether they are used legitimately within the network already.
  • Ensure monitoring at the network boundary is in place, that alerting is in place for connections with common anonymizing services and scrutinize the use of these services.

Defending against Octo Tempest activity

Align privilege in Microsoft Entra ID and Azure

Privileges spanning Microsoft Entra ID and Azure need to be holistically aligned, with purposeful design decisions to prevent unauthorized access to critical workloads. Reducing the number of users with permanently assigned critical roles is paramount to achieving this. Segregation of privilege between on-premises and cloud is also necessary to sever the ability to pivot within the environment.

It is highly recommended to implement Microsoft Entra Privileged Identity Management (PIM) as a central location for the management of both Microsoft Entra ID roles and Azure RBAC. For all critical roles, at minimum:

  • Implement role assignments as eligible rather than permanent.
  • Review and understand the role definition Actions and NotActions – ensure to select only the roles with actions that the user requires to do their role (least privileged access).
  • Configure these roles to be time-bound, deactivating after a specific timeframe.
  • Require users to perform MFA to elevate to the role.
  • Optionally require users to provide justification or a ticket number upon elevation.
  • Enable notifications for privileged role elevation to a subset of administrators.
  • Utilize PIM Access Reviews to reduce standing access in the organization on a periodic basis.

Every organization is different and, therefore, roles will be classified differently in terms of their criticality. Consider the scope of impact those roles may have on downstream resources, services, or identities in the event of compromise. For help desk administrators specifically, ensure to scope privilege to exclude administrative operations over Global Administrators. Consider implementing segregation strategies such as Microsoft Entra ID Administrative Units to segment administrative access over the tenant. For identities that leverage cross-service roles such as those that service the Microsoft Security Stack, consider implementing additional service-based granular access control to restrict the use of sensitive functionality, like Live Response and modification of IOC allow lists.

Segment Azure landing zones

For organizations yet to begin or are early in their modernization journey, end-to-end guidance for cloud adoption is available through the Microsoft Azure Cloud Adoption Framework. Recommended practice and security are central pillars—Azure workloads are segregated into separate, tightly restricted areas known as landing zones. When deploying Active Directory in the cloud, it is advised to create a platform landing zone for identity—a dedicated subscription to hold all Identity-related resources such as Domain Controller VM resources. Employ least privilege across this landing zone with the aforementioned privilege and PIM guidance for Azure RBAC.

Implement Conditional Access policies and authentication methods

TTPs outlined in this blog leverage strategies to evade multifactor authentication defenses. However, it is still strongly recommended to practice basic security hygiene by implementing a baseline set of Conditional Access policies:

  • Require multifactor authentication for all privileged roles with the use of authentication strengths to enforce phish-resistant MFA methods such as FIDO2 security keys
  • Require phishing-resistant multifactor authentication for administrators
  • Enforce MFA registration from trusted locations from a device that also meets organizational requirements with Intune device compliance policies
  • User and sign-in risk policies for signals associated to Microsoft Entra ID Protection

Organizations are recommended to keep their policies as simple as possible. Implementing complex policies might inhibit the ability to respond to threats at a rapid pace or allow threat actors to leverage misconfigurations within the environment.

Develop and maintain a user education strategy

An organization’s ability to protect itself against cyberattacks is only as strong as its people—it is imperative to put in place an end-to-end cybersecurity strategy highlighting the importance of ongoing user education and awareness. Targeted education and periodic security awareness campaigns around common cyber threats and attack vectors such as phishing and social engineering not only for users that hold administrative privilege in the organization, but the wider user base is crucial. A well-maintained incident response plan should be developed and refined to enable organizations to respond to unexpected cybersecurity events and rapidly regain positive control.

Use out-of-band communication channels

Octo Tempest has been observed joining, recording, and transcribing calls using tools such as OtterAI, and sending messages via Slack, Zoom, and Microsoft Teams, taunting and threatening targets, organizations, defenders, and gaining insights into incident response operations/planning. Using out-of-band communication channels is strongly encouraged when dealing with this threat actor.

Detections

Microsoft 365 Defender

Microsoft 365 Defender is becoming Microsoft Defender XDR. Learn more.

NOTE: Several tools mentioned throughout this blog are remote administrator tools that have been utilized by Octo Tempest to maintain persistence. While these tools are abused by threat actors, they can have legitimate use cases by normal users, and are updated on a frequent basis. Microsoft recommends monitoring their use within the environment, and when they are identified, defenders take the necessary steps for deconfliction to verify their use.

Microsoft Defender Antivirus

Microsoft Defender Antivirus detects this threat as the following malware:

Turning on tamper protection, which is part of built-in protection, prevents attackers from stopping security services.

Microsoft Defender for Endpoint

The following Microsoft Defender for Endpoint alerts can indicate associated threat activity:

  • Octo Tempest activity group

The following alerts might also indicate threat activity related to this threat. Note, however, that these alerts can also be triggered by unrelated threat activity.

  • Suspicious usage of remote management software
  • Mimikatz credential theft tool
  • BlackCat ransomware
  • Activity linked to BlackCat ransomware
  • Tampering activity typical to ransomware attacks
  • Possible hands-on-keyboard pre-ransom activity

Microsoft Defender for Cloud Apps

Using Microsoft Defender for Cloud Apps connectors, Microsoft 365 Defender raises AitM-related alerts in multiple scenarios. For Microsoft Entra ID customers using Microsoft Edge, attempts by attackers to replay session cookies to access cloud applications are detected by Microsoft 365 Defender through Defender for Cloud Apps connectors for Microsoft Office 365 and Azure. In such scenarios, Microsoft 365 Defender raises the following alerts:

  • Backdoor creation using AADInternals tool
  • Suspicious domain added to Microsoft Entra ID
  • Suspicious domain trust modification following risky sign-in
  • User compromised via a known AitM phishing kit
  • User compromised in AiTM phishing attack
  • Suspicious email deletion activity

Similarly, the connector for Okta raises the following alerts:

  • Suspicious Okta account enumeration
  • Possible AiTM phishing attempt in Okta

Microsoft Defender for Identity

Microsoft Defender for Identity raises the following alerts for TTPs used by Octo Tempest such as NTDS stealing and Active Directory reconnaissance:

  • Account enumeration reconnaissance
  • Network-mapping reconnaissance (DNS)
  • User and IP address reconnaissance (SMB)
  • User and Group membership reconnaissance (SAMR)
  • Suspected DCSync attack (replication of directory services)
  • Suspected AD FS DKM key read
  • Data exfiltration over SMB

Microsoft Defender for Cloud

The following Microsoft Defender for Cloud alerts relate to TTPs used by Octo Tempest. Note, however, that these alerts can also be triggered by unrelated threat activity.

  • MicroBurst exploitation toolkit used to enumerate resources in your subscriptions
  • MicroBurst exploitation toolkit used to execute code on your virtual machine
  • MicroBurst exploitation toolkit used to extract keys from your Azure key vaults
  • MicroBurst exploitation toolkit used to extract keys to your storage accounts
  • Suspicious Azure role assignment detected
  • Suspicious elevate access operation (Preview)
  • Suspicious invocation of a high-risk ‘Initial Access’ operation detected (Preview)
  • Suspicious invocation of a high-risk ‘Credential Access’ operation detected (Preview)
  • Suspicious invocation of a high-risk ‘Data Collection’ operation detected (Preview)
  • Suspicious invocation of a high-risk ‘Execution’ operation detected (Preview)
  • Suspicious invocation of a high-risk ‘Impact’ operation detected (Preview)
  • Suspicious invocation of a high-risk ‘Lateral Movement’ operation detected (Preview)
  • Unusual user password reset in your virtual machine
  • Suspicious usage of VMAccess extension was detected on your virtual machines (Preview)
  • Suspicious usage of multiple monitoring or data collection extensions was detected on your virtual machines (Preview)
  • Run Command with a suspicious script was detected on your virtual machine (Preview)
  • Suspicious Run Command usage was detected on your virtual machine (Preview)
  • Suspicious unauthorized Run Command usage was detected on your virtual machine (Preview)

Microsoft Sentinel

Microsoft Sentinel customers can use the following Microsoft Sentinel Analytics template to identify potential AitM phishing attempts:

  • Possible AitM Phishing Attempt Against Azure AD

This detection uses signals from Microsoft Entra ID Identity Protection and looks for successful sign-ins that have been flagged as high risk. It combines this with data from web proxy services, such as ZScaler, to identify where users might have connected to the source of those sign-ins immediately prior. This can indicate a user interacting with an AitM phishing site and having their session hijacked. This detection uses the Advanced Security Information Model (ASIM) Web Session schema. Refer to this article for more details on the schema and its requirements. 

Threat intelligence reports

Microsoft customers can use the following reports in Microsoft products to get the most up-to-date information about the threat actor, malicious activity, and techniques discussed in this blog. These reports provide the intelligence, protection info, and recommended actions to prevent, mitigate, or respond to associated threats found in customer environments.

Microsoft Defender Threat Intelligence

Microsoft 365 Defender Threat analytics  

Hunting queries

Microsoft Sentinel

Microsoft Sentinel customers can use the TI Mapping analytics (a series of analytics all prefixed with ‘TI map’) to automatically match the malicious domain indicators mentioned in this blog post with data in their workspace. If the TI Map analytics are not currently deployed, customers can install the Threat Intelligence solution from the Microsoft Sentinel Content Hub to have the analytics rule deployed in their Sentinel workspace.

Microsoft Sentinel also has a range of detection and threat hunting content that customers can use to detect the post exploitation activity detailed in this blog in addition to Microsoft 365 Defender detections list above.

Further reading

Listen to Microsoft experts discuss Octo Tempest TTPs and activities on The Microsoft Threat Intelligence Podcast.

Visit this page for more blogs from Microsoft Incident Response.

For more security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on X (formerly Twitter) at https://twitter.com/MsftSecIntel.

November 1, 2023 update: Updated the Actions of objectives section to fix the list of anonymous file-hosting services used by Octo Tempest for data exfiltration, which incorrectly listed Sh.Azl. It has been corrected to shz.al.

The post Octo Tempest crosses boundaries to facilitate extortion, encryption, and destruction appeared first on Microsoft Security Blog.

]]>
Storm-0978 attacks reveal financial and espionage motives http://approjects.co.za/?big=en-us/security/blog/2023/07/11/storm-0978-attacks-reveal-financial-and-espionage-motives/ Tue, 11 Jul 2023 17:30:00 +0000 Microsoft has identified a phishing campaign conducted by the threat actor tracked as Storm-0978 targeting defense and government entities in Europe and North America. The campaign involved the abuse of CVE-2023-36884, which included a zero-day remote code execution vulnerability exploited via Microsoft Word documents.

The post Storm-0978 attacks reveal financial and espionage motives appeared first on Microsoft Security Blog.

]]>

August 8, 2023 update: Microsoft released security updates to address CVE-2023-36884. Customers are advised to apply patches, which supersede the mitigations listed in this blog, as soon as possible.

Microsoft has identified a phishing campaign conducted by the threat actor tracked as Storm-0978 targeting defense and government entities in Europe and North America. The campaign involved the abuse of CVE-2023-36884, which included a remote code execution vulnerability exploited before disclosure to Microsoft via Word documents, using lures related to the Ukrainian World Congress.

Storm-0978 (DEV-0978; also referred to as RomCom, the name of their backdoor, by other vendors) is a cybercriminal group based out of Russia, known to conduct opportunistic ransomware and extortion-only operations, as well as targeted credential-gathering campaigns likely in support of intelligence operations. Storm-0978 operates, develops, and distributes the RomCom backdoor. The actor also deploys the Underground ransomware, which is closely related to the Industrial Spy ransomware first observed in the wild in May 2022. The actor’s latest campaign detected in June 2023 involved abuse of CVE-2023-36884 to deliver a backdoor with similarities to RomCom.

Storm-0978 is known to target organizations with trojanized versions of popular legitimate software, leading to the installation of RomCom. Storm-0978’s targeted operations have impacted government and military organizations primarily in Ukraine, as well as organizations in Europe and North America potentially involved in Ukrainian affairs. Identified ransomware attacks have impacted the telecommunications and finance industries, among others.

Microsoft 365 Defender detects multiple stages of Storm-0978 activity. Customers who use Microsoft Defender for Office 365 are protected from attachments that attempt to exploit CVE-2023-36884. In addition, customers who use Microsoft 365 Apps (Versions 2302 and later) are protected from exploitation of the vulnerability via Office. Organizations who cannot take advantage of these protections can set the FEATURE_BLOCK_CROSS_PROTOCOL_FILE_NAVIGATION registry key to avoid exploitation. More mitigation recommendations are outlined in this blog.

Microsoft 365 Defender is becoming Microsoft Defender XDR. Learn more.

Targeting

Storm-0978 has conducted phishing operations with lures related to Ukrainian political affairs and targeting military and government bodies primarily in Europe. Based on the post-compromise activity identified by Microsoft, Storm-0978 distributes backdoors to target organizations and may steal credentials to be used in later targeted operations.

The actor’s ransomware activity, in contrast, has been largely opportunistic in nature and entirely separate from espionage-focused targets. Identified attacks have impacted the telecommunications and finance industries.

Tools and TTPs

Tools

Storm-0978 uses trojanized versions of popular, legitimate software, leading to the installation of RomCom, which Microsoft assesses is developed by Storm-0978. Observed examples of trojanized software include Adobe products, Advanced IP Scanner, Solarwinds Network Performance Monitor, Solarwinds Orion, KeePass, and Signal. To host the trojanized installers for delivery, Storm-0978 typically registers malicious domains mimicking the legitimate software (for example, the malicious domain advanced-ip-scaner[.]com).

In financially motivated attacks involving ransomware, Storm-0978 uses the Industrial Spy ransomware, a ransomware strain first observed in the wild in May 2022, and the Underground ransomware. The actor has also used the Trigona ransomware in at least one identified attack.

Additionally, based on attributed phishing activity, Storm-0978 has acquired exploits targeting zero-day vulnerabilities. Identified exploit activity includes abuse of CVE-2023-36884, including a remote code execution vulnerability exploited via Microsoft Word documents in June 2023, as well as abuse of vulnerabilities contributing to a security feature bypass.

Ransomware activity

In known ransomware intrusions, Storm-0978 has accessed credentials by dumping password hashes from the Security Account Manager (SAM) using the Windows registry. To access SAM, attackers must acquire SYSTEM-level privileges. Microsoft Defender for Endpoint detects this type of activity with alerts such as Export of SAM registry hive.

Storm-0978 has then used the Impacket framework’s SMBExec and WMIExec functionalities for lateral movement.

Microsoft has linked Storm-0978 to previous management of the Industrial Spy ransomware market and crypter. However, since as early as July 2023, Storm-0978 began to use a ransomware variant called Underground, which contains significant code overlaps with the Industrial Spy ransomware.

Screenshot of the Storm-0978 ransom note
Figure 1. Storm-0978 ransom note references the “Underground team” and contains target-specific details of exfiltrated information

The code similarity between the two ransomware variants, as well as Storm-0978’s previous involvement in Industrial Spy operations, may indicate that Underground is a rebranding of the Industrial Spy ransomware.

Screenshot of the underground ransomware .onion site
Figure 2. Underground ransomware .onion site

Espionage activity

Since late 2022, Microsoft has identified the following campaigns attributable to Storm-0978. Based on the post-compromise activity and the nature of the targets, these operations were likely driven by espionage-related motivations:

June 2023 – Storm-0978 conducted a phishing campaign containing a fake OneDrive loader to deliver a backdoor with similarities to RomCom. The phishing emails were directed to defense and government entities in Europe and North America, with lures related to the Ukrainian World Congress. These emails led to exploitation via the CVE-2023-36884 vulnerability.

Microsoft Defender for Office 365 detected Storm-0978’s initial use of the exploit targeting CVE-2023-36884 in this phishing activity. Additional recommendations specific to this vulnerability are detailed below.

Screenshot of phishing email using Ukrainian World Congress and NATO themes
Figure 3. Storm-0978 email uses Ukrainian World Congress and NATO themes
Screenshot of the lure document with Ukrainian World Congress and NATO content
Figure 4. Storm-0978 lure document with Ukrainian World Congress and NATO content

Notably, during this campaign, Microsoft identified concurrent, separate Storm-0978 ransomware activity against an unrelated target using the same initial payloads. The subsequent ransomware activity against a different victim profile further emphasizes the distinct motivations observed in Storm-0978 attacks.

December 2022 – According to CERT-UA, Storm-0978 compromised a Ukrainian Ministry of Defense email account to send phishing emails. Identified lure PDFs attached to emails contained links to a threat actor-controlled website hosting information-stealing malware.

October 2022 – Storm-0978 created fake installer websites mimicking legitimate software and used them in phishing campaigns. The actor targeted users at Ukrainian government and military organizations to deliver RomCom and likely to obtain credentials of high-value targets.

Recommendations

Microsoft recommends the following mitigations to reduce the impact of activity associated with Storm-0978’s operations.

CVE-2023-36884 specific recommendations

August 8, 2023 update: Microsoft released security updates to address CVE-2023-36884. Customers are advised to apply patches, which supersede the mitigations below, as soon as possible.

  • Customers who use Microsoft Defender for Office 365 are protected from attachments that attempt to exploit CVE-2023-36884.
  • In addition, customers who use Microsoft 365 Apps (Versions 2302 and later) are protected from exploitation of the vulnerability via Office.
  • In current attack chains, the use of the Block all Office applications from creating child processes attack surface reduction rule prevents the vulnerability from being exploited
  • Organizations who cannot take advantage of these protections can set the FEATURE_BLOCK_CROSS_PROTOCOL_FILE_NAVIGATION registry key to avoid exploitation. 
    • No OS restart is required, but restarting the applications that have had the registry key added for them is recommended in case the value was already queried and is cached.
    • Please note that while these registry settings would mitigate exploitation of this issue, it could affect regular functionality for certain use cases related to these applications. For this reason, we suggest testing. To disable the mitigation, delete the registry key or set it to “0”.
Screenshot of Registry Editor showing setting for the FEATURE_BLOCK_CROSS_PROTOCOL_FILE_NAVIGATION key
Figure 5. Screenshot of settings for the FEATURE_BLOCK_CROSS_PROTOCOL_FILE_NAVIGATION key to prevent exploitation of CVE-2023-36884

Detection details

Microsoft Defender for Office 365

Microsoft Defender for Office 365 customers are protected from attachments that attempt to exploit CVE-2023-36884.

Microsoft Defender Antivirus

Microsoft Defender Antivirus detects post-compromise components of this threat as the following malware:

Microsoft Defender for Endpoint

Alerts with the following titles in the security center can indicate threat activity on your network:

  • Emerging threat activity group Storm-0978 detected

Microsoft Sentinel

Microsoft Sentinel also has detection and threat hunting content that customers can use to detect the post exploitation activity detailed in this blog in addition to Microsoft 365 Defender detections list above.

The following content can be used to identify activity described in this blog post:

References

Further reading

For the latest security research from the Microsoft Threat Intelligence community, check out the Microsoft Threat Intelligence Blog: https://aka.ms/threatintelblog.

To get notified about new publications and to join discussions on social media, follow us on Twitter at https://twitter.com/MsftSecIntel.

The post Storm-0978 attacks reveal financial and espionage motives appeared first on Microsoft Security Blog.

]]>
Cyber Signals: Shifting tactics fuel surge in business email compromise http://approjects.co.za/?big=en-us/security/blog/2023/05/19/cyber-signals-shifting-tactics-fuel-surge-in-business-email-compromise/ Fri, 19 May 2023 10:00:00 +0000 Business email operators seek to exploit the daily sea of email traffic to lure victims into providing financial and other sensitive business information.

The post Cyber Signals: Shifting tactics fuel surge in business email compromise appeared first on Microsoft Security Blog.

]]>
Today we released the fourth edition of Cyber Signals highlighting a surge in cybercriminal activity around business email compromise (BEC). Microsoft has observed a 38 percent increase in cybercrime as a service (CaaS) targeting business email between 2019 and 2022.1

Successful BEC attacks cost organizations hundreds of millions of dollars annually. In 2022, the FBI’s Recovery Asset Team (RAT) initiated the Financial Fraud Kill Chain (FFKC) on 2,838 BEC complaints involving domestic transactions with potential losses of more than USD590 million.2  

BEC attacks stand apart in the cybercrime industry for their emphasis on social engineering and the art of deception. Between April 2022 and April 2023, Microsoft Threat Intelligence detected and investigated 35 million BEC attempts with an adjusted average of 156,000 attempts daily. 

Cyber Signals

Microsoft’s Digital Crimes Unit has observed a 38 percent increase in cybercrime as a service targeting business email between 2019 and 2022.

graphical user interface, application

Common BEC tactics

Threat actors’ BEC attempts can take many forms—including via phone calls, text messages, emails, or social media. Spoofing authentication request messages and impersonating individuals and companies are also common tactics. 

Instead of exploiting vulnerabilities in unpatched devices, BEC operators seek to exploit the daily sea of email traffic and other messages to lure victims into providing financial information, or taking direct action like unknowingly sending funds to money mule accounts that help criminals perform fraudulent money transfers.  

Unlike a “noisy” ransomware attack featuring disruptive extortion messages, BEC operators play a quiet confidence game using contrived deadlines and urgency to spur recipients who may be distracted or accustomed to these types of urgent requests. Instead of novel malware, BEC adversaries align their tactics to focus on tools improving the scale, plausibility, and in-box success rate of malicious messages. 

Microsoft observes a significant trend in attackers’ use of platforms like BulletProftLink, a popular service for creating industrial-scale malicious mail campaigns, which sells an end-to-end service including templates, hosting, and automated services for BEC. Adversaries using this CaaS are also provided with IP addresses to help guide BEC targeting.   

BulletProftLink’s decentralized gateway design, which includes Internet Computer blockchain nodes to host phishing and BEC sites, creates an even more sophisticated decentralized web offering that’s much harder to disrupt. Distributing these sites’ infrastructure across the complexity and evolving growth of public blockchains makes identifying them, and aligning takedown actions, more complex.  

While there have been several high-profile attacks that take advantage of residential IP addresses, Microsoft shares law enforcement and other organizations’ concern that this trend can be rapidly scaled, making it difficult to detect activity with traditional alarms or notifications.  

Although, threat actors have created specialized tools to facilitate BEC, including phishing kits and lists of verified email addresses targeting C-suite leaders, accounts payable leads, and other specific roles, there are methods that enterprises can employ to preempt attacks and mitigate risk.  

BEC attacks offer a great example of why cyber risk needs to be addressed in a cross-functional way with IT, compliance, and cyber risk officers at the table alongside executives and leaders, finance employees, human resource managers, and others with access to employee records like social security numbers, tax statements, contact information, and schedules.   

Recommendations to combat BEC

  • Use a secure email solution: Today’s cloud platforms for email use AI capabilities like machine learning to enhance defenses, adding advanced phishing protection and suspicious forwarding detection. Cloud apps for email and productivity also offer the advantages of continuous, automatic software updates and centralized management of security policies.  
  • Secure Identities to prohibit lateral movement: Protecting identities is a key pillar to combating BEC. Control access to apps and data with Zero Trust and automated identity governance.  
  • Adopt a secure payment platform: Consider switching from emailed invoices to a system specifically designed to authenticate payments.  

Learn more

Read the fourth edition of Cyber Signals today.

For more threat intelligence insights and guidance including past issues of Cyber Signals, visit Security Insider

To learn more about Microsoft Security solutions, visit our website. Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us on LinkedIn (Microsoft Security) and Twitter (@MSFTSecurity) for the latest news and updates on cybersecurity.


End notes

1Cyber Signals, Microsoft.

2Internet Crime Complaint Center Releases 2022 Statistics, FBI.

The post Cyber Signals: Shifting tactics fuel surge in business email compromise appeared first on Microsoft Security Blog.

]]>
2022 holiday DDoS protection guide http://approjects.co.za/?big=en-us/security/blog/2022/11/15/2022-holiday-ddos-protection-guide/ Tue, 15 Nov 2022 18:00:00 +0000 The holiday season is an exciting time for many people as they get to relax, connect with friends and family, and celebrate traditions. Organizations also have much to rejoice about during the holidays (for example, more sales for retailers and more players for gaming companies). Unfortunately, cyber attackers also look forward to this time of year to celebrate an emerging holiday tradition—distributed denial-of-service (DDoS) attacks.

The post 2022 holiday DDoS protection guide appeared first on Microsoft Security Blog.

]]>
The holiday season is an exciting time for many people as they get to relax, connect with friends and family, and celebrate traditions. Organizations also have much to rejoice about during the holidays (for example, more sales for retailers and more players for gaming companies). Unfortunately, cyber attackers also look forward to this time of year to celebrate an emerging holiday tradition—distributed denial-of-service (DDoS) attacks.

While DDoS attacks happen all year round, the holidays are one of the most popular times and where some of the most high-profile attacks occur. Last October in India, there was a 30-fold increase in DDoS attacks targeting services frequently used during the festive season, including media streaming, internet phone services, and online gaming1. Last October through December, Microsoft mitigated several large-scale DDoS attacks, including one of the largest attacks in history from approximately 10,000 sources spanning multiple countries2.

Bar chart showing the number of DDoS attacks and duration distribution from March 2021-May 2022.
Figure 1. Number of DDoS attacks and duration distribution3

While retail and gaming companies are the most targeted during the holidays, organizations of all sizes and types are vulnerable to DDoS attacks. It’s easier than ever to conduct an attack. For only $500, anyone can pay for a DDoS subscription service to launch a DDoS attack. Every year, DDoS attacks are also becoming harder to protect against as new attack vectors emerge and cybercriminals leverage more advanced techniques, such as AI-based attacks.

With the holidays coming up, we’ve prepared this guide to provide you with an overview of DDoS attacks, trends we are seeing, and tips to help you protect against DDoS attacks.

What is a DDoS attack and how does it work?

A DDoS attack targets websites and servers by disrupting network services and attempts to overwhelm an application’s resources. Attackers will flood a site or server with large amounts of traffic, resulting in poor website functionality or knocking it offline altogether. DDoS attacks are carried out by individual devices (bots) or network of devices (botnet) that have been infected with malware and used to flood websites or services with high volumes of traffic. DDoS attacks can last a few hours, or even days.

What are the motives for DDoS attacks?

There is a wide range of motives behind DDoS attacks, including financial, competitive advantage, or political. Attackers will hold a site’s functionality hostage demanding payment to stop the attacks and get sites and serves back online. We’re seeing a rise in cybercriminals combining DDoS attacks with other extortion attacks like ransomware (known as triple extortion ransomware) to extort more pressure and command higher payouts. Politically motivated attacks, also known as “hacktivism”, are becoming more commonly used to disrupt political processes. At the start of the war in Ukraine earlier in 2022, the Ukrainian government reported the worst DDoS attack in history as attackers aimed to take down bank and government websites4.  Also, cybercriminals will often use DDoS attacks as a distraction for more sophisticated targeted attacks, including malware insertion and data exfiltration.

Why are DDoS attacks so common during the holidays?

Organizations typically have reduced resources dedicated to monitoring their networks and applications—providing easier opportunities for threat actors to execute an attack. Traffic volume is at an all-time high, especially for e-commerce websites and gaming providers, making it harder for IT staff to distinguish between legitimate and illegitimate traffic. For attackers seeking financial gain, the opportunity for more lucrative payouts can be higher during the holidays as revenues are at the highest and service uptime is critical. Organizations are more willing to pay to stop an attack to minimize loss of sales, customer dissatisfaction, or damage to their reputation.

Why protect yourself from DDoS attacks?

Any website or server downtime during the peak holiday season can result in lost sales and customers, high recovery costs, or damage to your reputation. The impact is even more significant for smaller organizations as it is harder for them to recover from an attack. Beyond the holidays when traffic is traditionally the highest, ongoing protection is also important. In 2021, the day with the most recorded attacks was August 10, indicating that there could be a shift toward year-round attacks2.

Tips for protecting and responding against DDoS attacks

  1. Don’t wait until after an attack to protect yourself. While you cannot completely avoid being a target of a DDoS attack, proactive planning and preparation can help you more effectively defend against an attack.
    • Identify the applications within your organization that are exposed to the public internet and evaluate potential risks and vulnerabilities.
    • It’s important that you understand the normal behavior of your application so that you’re prepared to act if the application is not behaving as expected. Azure provides monitoring services and best practices to help you gain insights on the health of your application and diagnose issues.
    • We recommend running attack simulations to test how your services will respond to an attack. You can simulate a DDoS attack on your Azure environment with services from our testing partners—BreakingPoint Cloud and RedButton.
  2. Make sure you’re protected. With DDoS attacks at an all-time high during the holidays, you need a DDoS protection service with advanced mitigation capabilities that can handle attacks at any scale.
    • We recommend enabling Azure DDoS Protection, which provides always-on traffic monitoring to automatically mitigate an attack when detected, adaptive real time tuning that compares your actual traffic against predefined thresholds, and full visibility on DDoS attacks with real-time telemetry, monitoring, and alerts.
    • Azure DDoS Protection should be enabled for virtual networks with applications exposed over the public internet. Resources in a virtual network that require protection against DDoS attacks include Azure Application Gateway, Azure Load Balancer, Azure Virtual Machines, and Azure Firewall.
    • For comprehensive protection against different types of DDoS attacks, set up a multi-layered defense by deploying Azure DDoS Protection with Azure Web Application Firewall (WAF). Azure DDoS Protection protects the network layer (Layer 3 and 4), and Azure WAF protects the application layer (Layer 7). You receive a discount on Azure WAF when deploying DDoS Network Protection along with Azure WAF, helping to reduce costs.
    • Azure DDoS Protection identifies and mitigates DDoS attacks without any user intervention. To get notified when there’s an active mitigation for a protected public IP resource, you can configure alerts.
  3. Create a DDoS response strategy. Having a response strategy is critical to help you identify, mitigate, and quickly recover from DDoS attacks. A key part of the strategy is a DDoS response team with clearly defined roles and responsibilities. This DDoS response team should understand how to identify, mitigate, and monitor an attack and be able to coordinate with internal stakeholders and customers. We recommend using simulation testing to identify any gaps in your response strategy.
  4. Reach out for help during an attack. If you think you are experiencing an attack, you should reach out to the appropriate technical professionals for help. Azure DDoS Protection customers have access to the DDoS Rapid Response (DRR) team, who can help with attack investigation during an attack as well as post-attack analysis. Check out this guide for more details on when and how to engage with the DRR team during an active attack.
  5. Learn and adapt after an attack. While you’ll likely want to move on as quickly as possible if you’ve experienced an attack, it’s important to continue to monitor your resources and conduct a retrospective after an attack. You should apply any learnings to improve your DDoS response strategy.

Azure offers cloud native, Zero Trust based network security solutions to protect your valuable resources from evolving threats. Azure DDoS Protection provides advanced, cloud-scale protection to defend against the largest and most sophisticated DDoS attacks.

Don’t let DDoS attacks ruin your holidays! Prepare for the upcoming holiday season with this guide and make sure Azure DDoS Protection is at the top of your holiday shopping list.

References

1Thirty-fold increase in DDoS cyber attacks in India in festive season, CIO News, ET CIO (indiatimes.com)

2Azure DDoS Protection—2021 Q3 and Q4 DDoS attack trends

3Microsoft Digital Defense Report 2022

4Ukraine says it suffered worst DDoS Attack in Standoff

Additional resources

Azure DDoS Protection reference architectures

Components of a DDoS response strategy

Azure DDoS Protection fundamental best practices

Azure network security resources

The post 2022 holiday DDoS protection guide appeared first on Microsoft Security Blog.

]]>
DEV-0832 (Vice Society) opportunistic ransomware campaigns impacting US education sector http://approjects.co.za/?big=en-us/security/blog/2022/10/25/dev-0832-vice-society-opportunistic-ransomware-campaigns-impacting-us-education-sector/ Tue, 25 Oct 2022 16:00:00 +0000 In recent months, Microsoft has detected active ransomware and extortion campaigns impacting the global education sector, particularly in the US, by a threat actor we track as DEV-0832, also known as Vice Society.

The post DEV-0832 (Vice Society) opportunistic ransomware campaigns impacting US education sector appeared first on Microsoft Security Blog.

]]>

April 2023 update – Microsoft Threat Intelligence has shifted to a new threat actor naming taxonomy aligned around the theme of weather. DEV-0832 is now tracked as Vanilla Tempest.

To learn about how the new taxonomy represents the origin, unique traits, and impact of threat actors, and to get a complete mapping of threat actor names, read this blog: Microsoft shifts to a new threat actor naming taxonomy.

In recent months, Microsoft has detected active ransomware and extortion campaigns impacting the global education sector, particularly in the US, by a threat actor we track as DEV-0832, also known as Vice Society. Shifting ransomware payloads over time from BlackCat, QuantumLocker, and Zeppelin, DEV-0832’s latest payload is a Zeppelin variant that includes Vice Society-specific file extensions, such as .v-s0ciety, .v-society, and, most recently, .locked. In several cases, Microsoft assesses that the group did not deploy ransomware and instead possibly performed extortion using only exfiltrated stolen data.

DEV-0832 is a cybercriminal group that has reportedly been active as early as June 2021. While the latest attacks between July and October 2022 have heavily impacted the education sector, DEV-0832’s previous opportunistic attacks have affected various industries like local government and retail. Microsoft assesses that the group is financially motivated and continues to focus on organizations where there are weaker security controls and a higher likelihood of compromise and ransom payout. Before deploying ransomware, DEV-0832 relies on tactics, techniques, and procedures commonly used among other ransomware actors, including the use of PowerShell scripts, repurposed legitimate tools, exploits for publicly disclosed vulnerabilities for initial access and post-compromise elevation of privilege, and commodity backdoors like SystemBC.

Ransomware has evolved into a complex threat that’s human-operated, adaptive, and focused on a wider scale, using data extortion as a monetization strategy to become even more impactful in recent years. To find easy entry and privilege escalation points in an environment, these attackers often take advantage of poor credential hygiene and legacy configurations or misconfigurations. Defenders can build a robust defense against ransomware by reading our ransomware as a service blog.

In this blog, we detail Microsoft’s analysis of observed DEV-0832 activity, including the tactics and techniques used across the group’s campaigns, with the goal of helping customers identify, investigate, and remediate activity in their environments. We provide hunting queries to help customers comprehensively search their environments for relevant indicators as well as protection and hardening guidance to help organizations increase resilience against these and similar attacks.

Who is DEV-0832 (Vice Society)?

Microsoft has identified multiple campaigns attributed to DEV-0832 over the past year based on the use of a unique PowerShell file name, staging directories, and ransom payloads and their accompanying notes. To gain an initial foothold in compromised networks, DEV-0832 has reportedly exploited vulnerable web-facing applications and used valid accounts. However, due to limited initial signals from affected organizations, Microsoft has not confirmed these attack vectors. Attackers then use custom PowerShell scripts, commodity tools, exploits for disclosed vulnerabilities, and native Windows binaries to gather privileged credentials, move laterally, collect and exfiltrate data, and deploy ransomware.

After deploying ransomware, DEV-0832 demands a ransom payment, threatening to leak stolen data on the group’s [.]onion site. In some cases, Microsoft observed that DEV-0832 did not deploy ransomware. Instead, the actors appeared to exfiltrate data and dwell within compromised networks. The group sometimes avoids a ransomware payload in favor of simple extortion—threatening to release stolen data unless a payment is made.

The group also goes to significant measures to ensure that an organization cannot recover from the attack without paying the ransom: Microsoft has observed DEV-0832 access two domain administrator accounts and reset user passwords of over 150,000 users, essentially locking out legitimate users before deploying ransomware to some devices. This effectively interrupts remediation efforts, including attempts to prevent the ransomware payload or post-compromise incident response.

Toolset

Ransomware payloads

Microsoft has observed DEV-0832 deploy multiple commodity ransomware variants over the past year: BlackCat, QuantumLocker, Zeppelin, and most recently a Vice Society-branded variant of the Zeppelin ransomware. While many ransomware groups have shifted away from branded file extensions in favor of randomly generated ones, DEV-0832 incorporated branding with their Vice Society variant using .v-s0ciety or .v-society file extensions. Most recently in late September 2022, DEV-0832 again modified their ransomware payload to a variant dubbed RedAlert, using a .locked file extension.

In one July 2022 intrusion, Microsoft security researchers identified DEV-0832 attempt to deploy QuantumLocker binaries, then within five hours, attempt to deploy suspected Zeppelin ransomware binaries. Such an incident might suggest that DEV-0832 maintains multiple ransomware payloads and switches depending on target defenses or, alternatively, that dispersed operators working under the DEV-0832 umbrella might maintain their own preferred ransomware payloads for distribution. The shift from a ransomware as a service (RaaS) offering (BlackCat) to a purchased wholly-owned malware offering (Zeppelin) and a custom Vice Society variant indicates DEV-0832 has active ties in the cybercriminal economy and has been testing ransomware payload efficacy or post-ransomware extortion opportunities.

In many intrusions, DEV-0832 stages their ransomware payloads in a hidden share on a Windows system, for example accessed via a share name containing “$”. Once DEV-0832 has exfiltrated data, they then distribute the ransomware onto local devices for launching, likely using group policy, as shown in the below command:

Figure 1. Group policy to distribute ransomware onto local devices

The group also has cross-platform capabilities: Microsoft identified the deployment of a Vice Society Linux Encryptor on a Linux ESXi server.

PowerShell scripts

DEV-0832 uses a PowerShell script to conduct a variety of malicious activities and make system-related changes within compromised networks. Like their ransomware payloads, DEV-0832 typically stages their PowerShell scripts on a domain controller.

Microsoft security researchers have observed several variations among identified DEV-0832 PowerShell scripts, indicating ongoing refinement and development over time—while some only perform system discovery commands, other scripts are further modified to perform persistence, defense evasion, data exfiltration, and even distribute the ransomware payloads.

Commodity tools

According to Microsoft investigations, DEV-0832 has used two commodity backdoors in ransomware attacks: SystemBC and PortStarter.

SystemBC is a post-compromise commodity remote access trojan (RAT) and proxy tool that has been incorporated into multiple diverse ransomware attacks. In one DEV-0832 intrusion, the attacker used both a compromised domain admin user account and a compromised contractor account to launch a PowerShell command that launched a SystemBC session under the value name “socks”:

Figure 2. Powershell command launching a SystemBC session named ‘socks’

PortStarter is a backdoor written in Go. According to Microsoft analysis, this malware provides functionality such as modifying firewall settings and opening ports to connect to pre-configured command-and-control (C2) servers.

DEV-0832 has also deployed ransomware payloads using the remote launching tool Power Admin. Power Admin is a legitimate tool that provides functionality to monitor servers and applications, as well as file access auditing. If an organization has enabled Console Security settings within Power Admin, an attacker must have credentials to make authorized changes.

Other commodity tools identified in DEV-0832 attacks include Advanced Port Scanner and Advanced IP Scanner for network discovery.

Abuse of legitimate tooling

Like many other ransomware actors, DEV-0832 relies on misusing legitimate system tools to reduce the need to launch malware or malicious scripts that automated security solutions might detect. Observed tools include:

  • Use of the Windows Management Instrumentation Command-line (WMIC) to launch commands that delete Mongo databases, other backups, and security programs.
  • Use of Impacket’s WMIexec functionality, an open-source tool to launch commands via WMI, and Impacket atexec.py, which launches commands using Task Scheduler.
  • Use of the vssadmin command to delete shadow copy backups on Windows Server.
  • Use of PsExec to remotely launch PowerShell, batch scripts, and deploy ransomware payloads

Additionally, in one identified intrusion, DEV-0832 attempted to turn off Microsoft Defender Antivirus using registry commands. Enabling Microsoft Defender Antivirus tamper protection helps block this type of activity.

table
Figure 3. Registry commands that attempt to tamper with Microsoft Defender antivirus software

Harvesting privileged credentials for ransomware deployment

Like other ransomware groups, after gaining an initial foothold within a network, DEV-0832 moves quickly to gather valid administrator local or domain credentials to ensure they can distribute ransomware payloads throughout the network for maximum impact.

Credential dumps

While Microsoft has not identified all the credential access techniques of DEV-0832, in many instances DEV-0832 accesses Local Security Authority Server Service (LSASS) dumps to obtain valid account credentials that were present in memory. Microsoft also observed that, instead of using a tool like Mimikatz to access a credential dump, DEV-0832 typically abuses the tool comsvcs.dll along with MiniDump to dump the LSASS process memory. Other ransomware actors have been observed using the same technique.

In cases where DEV-0832 obtained domain-level administrator accounts, they accessed NTDS dumps for later cracking. The following command shows the attacker exfiltrating the NTDS.dit file, which stores Active Directory data to an actor-created directory:

Figure 4. Example of attacker command to exfiltrate the ‘NTDS.dit’ file

Kerberoast

Microsoft has also identified DEV-0832 used the malicious PowerSploit module Invoke-Kerberoast to perform a Kerberoast attack, which is a post-exploitation technique used to obtain credentials for a service account from Active Directory Domain Services (AD DS). The Invoke-Kerberoast module requests encrypted service tickets and returns them in an attacker-specified output format compatible with cracking tools. The group can use the cracked Kerberos hashes to reveal passwords for service accounts, often providing access to an account that has the equivalent of domain admin privileges. Furthermore, one Kerberos service ticket can have many associated service principal names (SPNs); successful Kerberoasting can then grant an attacker access to the SPNs’ associated service or user accounts, such as obtaining ticket granting service (TGS) tickets for Active Directory SPNs that would allow an attacker to do offline password cracking.

Combined with the fact that service account passwords are not usually set to expire and typically remain unchanged for a great length of time, attackers like DEV-0832 continue to rely on Kerberoasting in compromised networks. Microsoft 365 Defender blocks this attack with Antimalware Scan Interface (AMSI) and machine learning. Monitor for alerts that reference Kerberoast attacks closely as the presence of these alerts typically indicates a human adversary in your environment.

Account creation

In one suspected DEV-0832 intrusion, Microsoft observed an operator create accounts that, based on the naming convention, were designed to blend in as admin accounts and allow persistence without malware, as shown in the following command:

Figure 5. Attacker command to create accounts

Monitoring newly created accounts can help identify this type of suspicious activity that does not rely on launching malware for persistence in the environment.

Exploitation of privilege escalation vulnerabilities

In August 2022, Microsoft security researchers identified one file during a DEV-0832 intrusion indicating that the group has incorporated an exploit for the disclosed, patched security flaw CVE-2022-24521 (Windows Common Log File System (CLFS) logical-error vulnerability). Microsoft released a patch in April 2022. The DEV-0832 file spawns a new cmd.exe process with system privileges.

According to public reporting, DEV-0832 has also incorporated exploits for the PrintNightmare vulnerability to escalate privileges in a domain. Combined with the CVE-2022-24521 exploit code, it is likely that DEV-0832, like many other adversaries, quickly incorporates available exploit code for disclosed vulnerabilities into their toolset to target unpatched systems.

Lateral movement with valid accounts

After gaining credentials, DEV-0832 frequently moves laterally within a network using Remote Desktop Protocol (RDP). And as previously mentioned, DEV-0832 has also used valid credentials to interact with remote network shares over Server Message Block (SMB) where they stage ransomware payloads and PowerShell scripts.

Data exfiltration

In one known intrusion, DEV-0832 operators exfiltrated hundreds of gigabytes of data by launching their PowerShell script, which was staged on a network share. The script contained hardcoded attacker-owned IP addresses and searched for wide-ranging, non-targeted keywords ranging from financial documents to medical information, while excluding files containing keywords such as varied antivirus product names or file artifact extensions. Given the wide range of keywords included in the script, it is unlikely that DEV-0832 regularly customizes it for each target.

Microsoft suspects that DEV-0832 uses legitimate tools Rclone and MegaSync for data exfiltration as well; many ransomware actors leverage these tools, which provide capabilities to upload files to cloud storage. DEV-0832 also uses file compression tools to collect data from compromised devices.

Mitigations

Apply these mitigations to reduce the impact of this threat:

  • Use device discovery to increase your visibility into your network by finding unmanaged devices on your network and onboarding them to Microsoft Defender for Endpoint.
  • Use Microsoft Defender Vulnerability Management to assess your current status and deploy any updates that might have been missed.
  • Utilize Microsoft Defender Firewall, intrusion prevention devices, and your network firewall to prevent RPC and SMB communication among endpoints whenever possible. This limits lateral movement as well as other attack activities.
  • Turn on cloud-delivered protection in Microsoft Defender Antivirus or the equivalent for your antivirus product to cover rapidly evolving attacker tools and techniques. Cloud-based machine learning protections block a huge majority of new and unknown variants.
  • Turn on tamper protection features to prevent attackers from stopping security services.
  • Run endpoint detection and response (EDR) in block mode so that Microsoft Defender for Endpoint can block malicious artifacts, even when your non-Microsoft antivirus doesn’t detect the threat or when Microsoft Defender Antivirus is running in passive mode. EDR in block mode works behind the scenes to remediate malicious artifacts that are detected post-breach.
  • Enable investigation and remediation in full automated mode to allow Microsoft Defender for Endpoint to take immediate action on alerts to resolve breaches, significantly reducing alert volume.
  • LSA protection is enabled by default on new Windows 11 devices, hardening the platform against credential dumping techniques. LSA PPL protection will further restrict access to memory dumps making it hard to obtain credentials.
  • Refer to Microsoft’s blog Ransomware as a service: Understanding the cybercrime gig economy and how to protect yourself for recommendations on building strong credential hygiene and other robust measures to defend against ransomware.

Microsoft customers can turn on attack surface reduction rules to prevent several of the infection vectors of this threat. These rules, which can be configured by any administrator, offer significant hardening against ransomware attacks. In observed attacks, Microsoft customers who had the following rules enabled were able to mitigate the attack in the initial stages and prevented hands-on-keyboard activity:

Detection details

Microsoft Defender Antivirus

Microsoft Defender Antivirus detects DEV-0832’s Vice Society-branded Zeppelin variant as the following malware:

Other commodity ransomware variants previously leveraged by DEV-0832 are detected as:

SystemBC and PortStarter are detected as:

Some pre-ransomware intrusion activity used in multiple campaigns by various activity groups can be detected generically. During identified DEV-0832 activity, associated command line activity was detected with generic detections, including:

  • Behavior:Win32/OfficeInjectingProc.A
  • Behavior:Win32/PsexecRemote.E
  • Behavior:Win32/SuspRemoteCopy.B
  • Behavior:Win32/PSCodeInjector.A
  • Behavior:Win32/REnamedPowerShell.A

Microsoft Defender for Endpoint

The following Microsoft Defender for Endpoint alerts can indicate threat activity on your network:

  • DEV-0832 activity group
  • ‘VSocCrypt’ ransomware was prevented

The following alerts might also indicate threat activity associated with this threat. These alerts, however, can be triggered by unrelated threat activity.

  • Use of living-off-the-land binary to run malicious code
  • Potential SystemBC execution via Windows Task Scheduler
  • Suspicious sequence of exploration activities
  • Process memory dump
  • Suspicious behavior by cmd.exe was observed
  • Suspicious remote activity
  • Suspicious access to LSASS service
  • Suspicious credential dump from NTDS.dit
  • File backups were deleted
  • System recovery setting tampering

The post DEV-0832 (Vice Society) opportunistic ransomware campaigns impacting US education sector appeared first on Microsoft Security Blog.

]]>
Cyber Signals: Defend against the new ransomware landscape http://approjects.co.za/?big=en-us/security/blog/2022/08/22/cyber-signals-defend-against-the-new-ransomware-landscape/ Mon, 22 Aug 2022 13:00:00 +0000 Today, Microsoft is excited to publish our second edition of Cyber Signals, spotlighting security trends and insights gathered from Microsoft’s 43 trillion security signals and 8,500 security experts. In this edition, we pull back the curtain on the evolving cybercrime economy and the rise of Ransomware-as-a-service (RaaS).

The post Cyber Signals: Defend against the new ransomware landscape appeared first on Microsoft Security Blog.

]]>
Today, Microsoft is excited to publish our second edition of Cyber Signals, spotlighting security trends and insights gathered from Microsoft’s 43 trillion security signals and 8,500 security experts. In this edition, we pull back the curtain on the evolving cybercrime economy and the rise of Ransomware-as-a-service (RaaS). Instead of relying on what cybercriminals say about themselves through extortion attempts, forum posts, or chat leaks, Microsoft threat intelligence gives us visibility into threat actors’ actions.

RaaS is often an arrangement between an operator, who develops and maintains the malware and attack infrastructure necessary to power extortion operations, and “affiliates” who sign on to deploy the ransomware payload against targets. Affiliates purchase initial access from brokers or hit lists of vulnerable organizations, such as those with exposed credentials or already having malware footholds on their networks. Cybercriminals then use these footholds as a launchpad to deploy a ransomware payload against targets.

The impact of RaaS dramatically lowers the barrier to entry for attackers, obfuscating those behind initial access brokering, infrastructure, and ransoming. Because RaaS actors sell their expertise to anyone willing to pay, budding cybercriminals without the technical prowess required to use backdoors or invent their own tools can simply access a victim by using ready-made penetration testing and system administrator applications to perform attacks.

The endless list of stolen credentials available online means that without basic defenses like multifactor authentication (MFA), organizations are at a disadvantage in combating ransomware’s infiltration routes before the malware deployment stage. Once it’s widely known among cybercriminals that access to your network is for sale, RaaS threat actors can create a commoditized attack chain, allowing themselves and others to profit from your vulnerabilities.

While many organizations consider it too costly to implement enhanced security protocols, security hardening actually saves money. Not only will your systems become more secure, but your organization will spend less on security costs and less time responding to threats, leaving more time to focus on incoming incidents.

Businesses are experiencing an increase in both the volume and sophistication of cyberattacks. The Federal Bureau of Investigation’s 2021 Internet Crime Report found that the cost of cybercrime in the United States totaled more than USD6.9 billion.1 The European Union Agency for Cybersecurity (ENISA) reports that between May 2021 and June 2022, about 10 terabytes of data were stolen each month by ransomware threat actors, with 58.2 percent of stolen files including employees’ personal data.2

It takes new levels of collaboration to meet the ransomware challenge. The best defenses begin with clarity and prioritization, which means more sharing of information across and between the public and private sectors and a collective resolve to help each other make the world safer for all. At Microsoft, we take that responsibility to heart because we believe security is a team sport. You can explore the latest cybersecurity insights and updates at our threat intelligence hub Security Insider

With a broad view of the threat landscape—informed by 43 trillion threat signals analyzed daily, combined with the human intelligence of our more than 8,500 experts—threat hunters, forensics investigators, malware engineers, and researchers, we see first-hand what organizations are facing and we’re committed to helping you put that information into action to pre-empt and disrupt extortion threats.

Learn more

To learn more about Microsoft Security solutions, visit our website. Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us at @MSFTSecurity for the latest news and updates on cybersecurity.


1Internet Crime Report, Federal Bureau of Investigation. 2021.

2Ransomware: Publicly Reported Incidents are only the tip of the iceberg, European Union Agency for Cybersecurity. July 29, 2022.

The post Cyber Signals: Defend against the new ransomware landscape appeared first on Microsoft Security Blog.

]]>
North Korean threat actor targets small and midsize businesses with H0lyGh0st ransomware http://approjects.co.za/?big=en-us/security/blog/2022/07/14/north-korean-threat-actor-targets-small-and-midsize-businesses-with-h0lygh0st-ransomware/ Thu, 14 Jul 2022 16:00:00 +0000 A group of actors originating from North Korea that MSTIC tracks as DEV-0530 has been developing and using ransomware in attacks since June 2021. This group, which calls itself H0lyGh0st, utilizes a ransomware payload with the same name.

The post North Korean threat actor targets small and midsize businesses with H0lyGh0st ransomware appeared first on Microsoft Security Blog.

]]>

April 2023 update – Microsoft Threat Intelligence has shifted to a new threat actor naming taxonomy aligned around the theme of weather. DEV-0530 is now tracked as Storm-0530 and PLUTONIUM is now tracked as Onyx Sleet.

To learn about how the new taxonomy represents the origin, unique traits, and impact of threat actors, and to get a complete mapping of threat actor names, read this blog: Microsoft shifts to a new threat actor naming taxonomy.

A group of actors originating from North Korea that Microsoft Threat Intelligence Center (MSTIC) tracks as DEV-0530 has been developing and using ransomware in attacks since June 2021. This group, which calls itself H0lyGh0st, utilizes a ransomware payload with the same name for its campaigns and has successfully compromised small businesses in multiple countries as early as September 2021.

Along with their H0lyGh0st payload, DEV-0530 maintains an .onion site that the group uses to interact with their victims. The group’s standard methodology is to encrypt all files on the target device and use the file extension .h0lyenc, send the victim a sample of the files as proof, and then demand payment in Bitcoin in exchange for restoring access to the files. As part of their extortion tactics, they also threaten to publish victim data on social media or send the data to the victims’ customers if they refuse to pay. This blog is intended to capture part of MSTIC’s analysis of DEV-0530 tactics, present the protections Microsoft has implemented in our security products, and share insights on DEV-0530 and H0lyGh0st ransomware with the broader security community to protect mutual customers.

MSTIC assesses that DEV-0530 has connections with another North Korean-based group tracked as PLUTONIUM (aka DarkSeoul or Andariel). While the use of H0lyGh0st ransomware in campaigns is unique to DEV-0530, MSTIC has observed communications between the two groups, as well as DEV-0530 using tools created exclusively by PLUTONIUM.

As with any observed nation-state actor activity, Microsoft directly notifies customers that have been targeted or compromised, providing them with the information they need to secure their accounts. Microsoft uses DEV-#### designations as a temporary name given to an unknown, emerging, or a developing cluster of threat activity, allowing MSTIC to track it as a unique set of information until we reach high confidence about the origin or identity of the actor behind the activity.

Who is DEV-0530?

DEV-0530 primarily operates ransomware campaigns to pursue financial objectives. In MSTIC’s investigations of their early campaigns, analysts observed that the group’s ransom note included a link to the .onion site hxxp://matmq3z3hiovia3voe2tix2x54sghc3tszj74xgdy4tqtypoycszqzqd[.]onion, where the attackers claim to “close the gap between the rich and poor”. They also attempt to legitimize their actions by claiming to increase the victim’s security awareness by letting the victims know more about their security posture.

A screenshot of the ransom noted displayed by the H0lyGh0st ransomware. The page has a white background with black text, and presents information on how the ransomware victim can restore their files.
Figure 1. A H0lyGh0st ransom note linked to the attackers’ .onion site.
A screenshot of the H0lyGh0st .onion website. The page has a white background and white text, and presents claims made by the group regarding the motives behind their activities.
Figure 2. DEV-0530 attackers publishing their claims on their website.

Like many other ransomware actors, DEV-0530 notes on their website’s privacy policy that they would not sell or publish their victim’s data if they get paid. But if the victim fails to pay, they would publish everything. A contact form is also available for victims to get in touch with the attackers.

A screenshot from the H0lyGh0st website, presenting two sections in two columns. The column on the left detail their privacy and policy, while the one on the right pertains to their contact information.
Figure 3. Privacy policy and contact us information on the H0lyGh0st website.

Affiliations with other threat actors originating from North Korea

MSTIC assesses there is likely some overlap between DEV-0530 and PLUTONIUM. PLUTONIUM is a North Korean threat actor group affiliated with clusters of activity that are also known as DarkSeoul and Andariel. Active since at least 2014, PLUTONIUM has primarily targeted the energy and defense industries in India, South Korea, and the United States using a variety of tactics and techniques.

MSTIC has observed known DEV-0530 email accounts communicating with known PLUTONIUM attacker accounts. MSTIC has also observed both groups operating from the same infrastructure set, and even using custom malware controllers with similar names.

To further assess the origin of DEV-0530 operations, MSTIC performed a temporal analysis of observed activity from the group. MSTIC estimates that the pattern of life of DEV-0530 activity is most consistent with the UTC+8 and UTC+9 time zones. UTC+9 is the time zone used in North Korea.

Despite these similarities, differences in operational tempo, targeting, and tradecraft suggest DEV-0530 and PLUTONIUM are distinct groups.

Why are North Korean actors using ransomware?

Based on geopolitical observations by global experts on North Korean affairs and circumstantial observations, Microsoft analysts assess the use of ransomware by North Korea-based actors is likely motivated by two possible objectives.  

The first possibility is that the North Korean government sponsors this activity. The weakened North Korean economy has become weaker since 2016 due to sanctions, natural disasters, drought, and the North Korean government’s COVID-19 lockdown from the outside world since early 2020. To offset the losses from these economic setbacks, the North Korean government could have sponsored cyber actors stealing from banks and cryptocurrency wallets for more than five years. If the North Korean government is ordering these ransomware attacks, then the attacks would be yet another tactic the government has enabled to offset financial losses.

However, state-sponsored activity against cryptocurrency organizations has typically targeted a much broader set of victims than observed in DEV-0530 victimology. Because of this, it is equally possible that the North Korean government is not enabling or supporting these ransomware attacks. Individuals with ties to PLUTONIUM infrastructure and tools could be moonlighting for personal gain. This moonlighting theory might explain the often-random selection of victims targeted by DEV-0530.

Although Microsoft cannot be certain of DEV-0530’s motivations, the impact of these ransomware attacks on our customers raises the importance of exposing the underlying tactics and techniques, detecting and preventing attacks in our security products, and sharing our knowledge with the security ecosystem.

Ransomware developed by DEV-0530

Between June 2021 and May 2022, MSTIC classified H0lyGh0st ransomware under two new malware families: SiennaPurple and SiennaBlue. Both were developed and used by DEV-0530 in campaigns. MSTIC identified four variants under these families – BTLC_C.exe, HolyRS.exe, HolyLock.exe, and BLTC.exe – and clustered them based on code similarity, C2 infrastructure including C2 URL patterns, and ransom note text. BTLC_C.exe is written in C++ and is classified as SiennaPurple, while the rest are written in Go, and all variants are compiled into .exe to target Windows systems. Microsoft Defender Antivirus, which is built into and ships with Windows 10 and 11, detects and blocks BTLC_C.exe as SiennaPurple and the rest as SiennaBlue, providing protection for Windows users against all known variants the H0lyGh0st malware..

A timeline of the payloads used by DEV-0530 over time, SiennaPurple and SiennaBlue. The timeline covers developments from May 2021 to June 2022, with SiennaPurple being used from May to October 2021, and SiennaBlue from September 2021 to June 2022 and beyond.
Figure 4. Timeline of DEV-0530 ransomware payloads.

SiennaPurple ransomware family: BTLC_C.exe

BLTC_C.exe is a portable ransomware developed by DEV-0530 and was first seen in June 2021. This ransomware doesn’t have many features compared to all malware variants in the SiennaBlue family. Prominently, if not launched as an administrative user, the BLTC_C.exe malware displays the following hardcoded error before exiting:

"This program only execute under admin privilege".

The malware uses a simple obfuscation method for strings where 0x30 is subtracted from the hex value of each character, such that the string “aic^ef^bi^abc0” is decoded to 193[.]56[.]29[.]123. The indicators of compromise (IOCs) decoded from the BLTC_C.exe ransomware are consistent with all malware variants in the SiennaBlue family, including the C2 infrastructure and the HTTP beacon URL structure access.php?order=AccessRequest&cmn. The BTLC_C.exe sample analyzed by MSTIC has the following PDB path: M:\ForOP\attack(utils)\attack tools\Backdoor\powershell\btlc_C\Release\btlc_C.pdb.

SiennaBlue ransomware family: HolyRS.exe, HolyLocker.exe, and BTLC.exe

Between October 2021 and May 2022, MSTIC observed a cluster of new DEV-0530 ransomware variants written in Go. We classified these variants as SiennaBlue. While new Go functions were added to the different variants over time, all the ransomware in the SiennaBlue family share the same core Go functions.

A deeper look into the Go functions used in the SiennaBlue ransomware showed that over time, the core functionality expanded to include features like various encryption options, string obfuscation, public key management, and support for the internet and intranet. The table below demonstrates this expansion by comparing the Go functions in HolyRS.exe and BTLC.exe:

HolyRS.exe [2021]BTLC.exe [2022]
main_main
main_init_0
main_IsAdmin
main_encryptFiles
HolyLocker_RsaAlgorithm_GenerateKeyPair
HolyLocker_RsaAlgorithm_Encrypt
HolyLocker_CryptoAlogrithm___ptr_File__EncryptRSA
HolyLocker_CryptoAlogrithm___ptr_File__EncryptAES
HolyLocker_utilities_GenerateRandomANString
HolyLocker_utilities_StringInSlice
HolyLocker_utilities_SliceContainsSubstring
HolyLocker_utilities_RenameFile
HolyLocker_Main_init
HolyLocker_communication_New
HolyLocker_communication___ptr_Client__GetPubkeyFromServer
HolyLocker_communication___ptr_Client__Do
HolyLocker_communication___ptr_Client__SendEncryptedPayload
HolyLocker_communication___ptr_Client__SendFinishRequest
HolyLocker_communication___ptr_Client__AddNewKeyPairToIntranet
HolyLocker_communication___ptr_Client__AddNewKeyPair





main_main
main_init_0
main_IsAdmin
main_encryptFiles
main_DeleteSchTask
main_DisableNetworkDevice main_encryptString
main_decryptString
main_cryptAVPass
main_SelfDelete
HolyLocker_RsaAlgorithm_GenerateKeyPair
HolyLocker_RsaAlgorithm_Encrypt
HolyLocker_CryptoAlogrithm___ptr_File__EncryptRSA
HolyLocker_CryptoAlogrithm___ptr_File__EncryptAES
HolyLocker_utilities_GenerateRandomANString
HolyLocker_utilities_StringInSlice
HolyLocker_utilities_SliceContainsSubstring
HolyLocker_utilities_RenameFile
HolyLocker_Main_init
HolyLocker_communication_New
HolyLocker_communication___ptr_Client__GetPubkeyFromServer
HolyLocker_communication___ptr_Client__Do
HolyLocker_communication___ptr_Client__SendEncryptedPayload
HolyLocker_communication___ptr_Client__SendFinishRequest
HolyLocker_communication___ptr_Client__AddNewKeyPairToIntranet
HolyLocker_communication___ptr_Client__AddNewKeyPair  

MSTIC assesses DEV-0530 successfully compromised several targets in multiple countries using HolyRS.exe in November 2021. A review of the victims showed they were primarily small-to-midsized businesses, including manufacturing organizations, banks, schools, and event and meeting planning companies. The victimology indicates that these victims are most likely targets of opportunity. MSTIC suspects that DEV-0530 might have exploited vulnerabilities such as CVE-2022-26352 (DotCMS remote code execution vulnerability) on public-facing web applications and content management systems to gain initial access into target networks. The SiennaBlue malware variants were then dropped and executed. To date, MSTIC has not observed DEV-0530 using any 0-day exploits in their attacks.

After successfully compromising a network, DEV-0530 exfiltrated a full copy of the victims’ files. Next, the attackers encrypted the contents of the victim device, replacing all file names with Base64-encoded versions of the file names and renaming the extension to .h0lyenc. Victims found a ransom note in C:\FOR_DECRYPT.html, as well as an email from the attackers with subject lines such as:

!!!!We are < H0lyGh0st>. Please Read me!!!!

As seen in the screenshot below, the email from the attackers let the victim know that the group has stolen and encrypted all their files. The email also included a link to a sample of the stolen data to prove their claim, in addition to the demand for payment for recovering the files.

A screenshot of the email sent by DEV-0530 as a ransom note to their targets. The email message tells the target to pay in order to recover their files. It also mentions a URL where they can access some of their data.
Figure 5. Ransom note left by DEV-0530 attackers.

BTLC.exe is the latest DEV-0530 ransomware variant and has been seen in the wild since April 2022. BTLC.exe can be configured to connect to a network share using the default username, password, and intranet URL hardcoded in the malware if the ServerBaseURL is not accessible from the device. One notable feature added to BTLC.exe is a persistence mechanism in which the malware creates or deletes a scheduled task called lockertask, such that the following command line syntax can be used to launch the ransomware:

cmd.exe /Q /c schtasks /create /tn lockertask /tr [File] /sc minute /mo 1 /F /ru system 1> \\127.0.0.1\ADMIN$\__[randomnumber] 2>&1

Once the ransomware is successfully launched as an administrator, it tries to connect to the default ServerBaseURL hardcoded in the malware, attempts to upload a public key to the C2 server, and encrypts all files in the victim’s drive.

HolyRS.exe/HolyLocker.exe C2 configurationBTLC.exe C2 configuration
main_ServerBaseURL: hxxp://193[.]56[.]29[.]123:8888
main_IntranetURL: 10[.]10[.]3[.]42
main_Username: adm-karsair  
EncryptionKey: H0lyGh0stKey1234
IntranetUrl: 192[.]168[.]168[.]5
Username: atrismsp Scheduledtask name: lockertask
A screenshot of assembly code presenting configuration information used by the malware to connect to its C2 server. The code includes the C2 URL, as well as the attacker's username.
Figure 6. BTLC.exe C2 communication

Based on our investigation, the attackers frequently asked victims for anywhere from 1.2 to 5 Bitcoins. However, the attackers were usually willing to negotiate and, in some cases, lowered the price to less than one-third of the initial asking price. As of early July 2022, a review of the attackers’ wallet transactions shows that they have not successfully extorted ransom payments from their victims.

A screenshot from a Bitcoin explorer page presenting information on the attackers' Bitcoin wallet. The page shows that the Bitcoin wallet is empty.
Figure 7. Screenshot of DEV-0530 attackers’ wallet

HolyRS.exe/BTLC.exe C2 URL pattern:

  • hxxp://193[.]56[.]29[.]123:8888/access.php?order=GetPubkey&cmn=[Victim_HostName]
  • hxxp://193[.]56[.]29[.]123:8888/access.php?order=golc_key_add&cmn=[Victim_HostName]&type=1
  • hxxp://193[.]56[.]29[.]123:8888/access.php?order=golc_key_add&cmn=[Victim_HostName]&type=2
  • hxxp://193[.]56[.]29[.]123:8888/access.php?order=golc_finish&cmn=[Victim_HostName]&

Examples of HolyRS.exe/BTLC.exe ransom note metadata:

Attacker email address: H0lyGh0st@mail2tor[.]com
Image location: hxxps://cloud-ex42[.]usaupload[.]com/cache/plugins/filepreviewer/219002/f44c6929994386ac2ae18b93f8270ec9ff8420d528c9e35a878efaa2d38fb94c/1100x800_cropped.jpg
Report URL: hxxp://matmq3z3hiovia3voe2tix2x54sghc3tszj74xgdy4tqtypoycszqzqd[.]onion

Microsoft will continue to monitor DEV-0530 activity and implement protections for our customers. The current detections, advanced detections, and indicators of compromise (IOCs) in place across our security products are detailed below.

Microsoft has implemented protections to detect these malware families as SiennaPurple and SiennaBlue (e.g., Ransom:Win32/SiennaBlue.A) via Microsoft Defender Antivirus and Microsoft Defender for Endpoint, wherever these are deployed on-premises and in cloud environments.

Microsoft encourages all organizations to proactively implement and frequently validate a data backup and restore plan as part of broader protection against ransomware and extortion threats.

The techniques used by DEV-0530 in H0lyGh0st activity can be mitigated by adopting the security considerations provided below:

  • Use the included IOCs to investigate whether they exist in your environment and assess for potential intrusion.

Our blog on the ransomware as a service economy has an exhaustive guide on how to protect against ransomware threats. We encourage readers to refer to that blog for a comprehensive guide that has a deep dive into each of the following areas:

For small or midsize companies who use Microsoft Defender for Business or Microsoft 365 Business Premium, enabling each of the features below will provide a protective layer against these threats where applicable. For Microsoft 365 Defender customers, the following checklist eliminates security blind spots:

  • Turn on cloud-delivered protection in Microsoft Defender Antivirus to cover rapidly evolving attacker tools and techniques, block new and unknown malware variants, and enhance attack surface reduction rules and tamper protection.
  • Turn on tamper protection features to prevent attackers from stopping security services.
  • Run EDR in block mode so that Microsoft Defender for Endpoint can block malicious artifacts, even when a non-Microsoft antivirus doesn’t detect the threat or when Microsoft Defender Antivirus is running in passive mode. EDR in block mode also blocks indicators identified proactively by Microsoft Threat Intelligence teams.
  • Enable network protection to prevent applications or users from accessing malicious domains and other malicious content on the internet.
  • Enable investigation and remediation in full automated mode to allow Microsoft Defender for Endpoint to take immediate action on alerts to resolve breaches.
  • Use device discovery to increase visibility into the network by finding unmanaged devices and onboarding them to Microsoft Defender for Endpoint.
  • Protect user identities and credentials using Microsoft Defender for Identity, a cloud-based security solution that leverages on-premises Active Directory signals to monitor and analyze user behavior to identify suspicious user activities, configuration issues, and active attacks.

Indicators of compromise

This list provides IOCs observed during our investigation. We encourage our customers to investigate these indicators in their environments and implement detections and protections to identify past related activity and prevent future attacks against their systems.

IndicatorTypeDescription
99fc54786a72f32fd44c7391c2171ca31e72ca52725c68e2dde94d04c286fccdSHA-256Hash of BTLC_C.exe
f8fc2445a9814ca8cf48a979bff7f182d6538f4d1ff438cf259268e8b4b76f86SHA-256Hash of HolyRS.exe
bea866b327a2dc2aa104b7ad7307008919c06620771ec3715a059e675d9f40afSHA-256Hash of BTLC.exe
cmd.exe /Q /c schtasks /create /tn lockertask /tr [File] /sc minute /mo 1 /F /ru system 1> \\127.0.0.1\ADMIN$\__[randomnumber] 2>&1  Command lineExample of new ScheduledTask to BTLC.exe
193[.]56[.]29[.]123C2C2 IP address
H0lyGh0st@mail2tor[.]comEmailRansomware payment communication address
C:\FOR_DECRYPT.htmlFile pathFile path of ransom note

NOTE: These indicators should not be considered exhaustive for this observed activity.

Microsoft 365 detections

Microsoft Defender Antivirus

Microsoft Defender for Endpoint

Microsoft Defender for Endpoint customers may see any or a combination of the following alerts as an indication of possible attack.

  • DEV-0530 activity group
  • Ransomware behavior detected in the file system
  • Possible ransomware infection modifying multiple files
  • Possible ransomware activity

Advanced hunting queries

Microsoft Sentinel

To locate possible DEV-0530 activity mentioned in this blog post, Microsoft Sentinel customers can use the queries detailed below:

Identify DEV-0530  IOCs

This query identifies a match based on IOCs related to DEV-0530 across various Sentinel data feeds:

https://github.com/Azure/Azure-Sentinel/blob/master/Detections/MultipleDataSources/Dev-0530_July2022.yaml

Identify renamed file extension

DEV-0530 actors are known to encrypt the contents of the victim’s device as well as rename the file and extension. The following query detects the creation of files with .h0lyenc extension:

https://github.com/Azure/Azure-Sentinel/blob/master/Detections/MultipleDataSources/Dev-0530_FileExtRename.yaml

Identify Microsoft Defender Antivirus detection related to DEV-0530

This query looks for Microsoft Defender AV detections related to DEV-0530 and joins the alert with other data sources to surface additional information such as device, IP, signed-in on users, etc.

https://github.com/Azure/Azure-Sentinel/blob/master/Detections/SecurityAlert/Dev-0530AVHits.yaml

Yara rules

rule SiennaPurple 
{ 
	meta: 
        	author = "Microsoft Threat Intelligence Center (MSTIC)" 
		description = "Detects PDB path, C2, and ransom note in DEV-0530 Ransomware SiennaPurple samples" 
		hash = "99fc54786a72f32fd44c7391c2171ca31e72ca52725c68e2dde94d04c286fccd" 
	strings: 
		$s1 = "ForOP\\attack(utils)\\attack tools\\Backdoor\\powershell\\btlc_C\\Release\\btlc_C.pdb" 
		$s2 = "matmq3z3hiovia3voe2tix2x54sghc3tszj74xgdy4tqtypoycszqzqd.onion"
		$s3 = "H0lyGh0st@mail2tor.com"
		$s4 = "We are <HolyGhost>. All your important files are stored and encrypted."
		$s5 = "aic^ef^bi^abc0"
		$s6 = "---------------------------3819074751749789153841466081"

	condition: 
		uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and 
		filesize < 7MB and filesize > 1MB and 
		all of ($s*) 
}
rule SiennaBlue 
{ 
    	meta: 
		author = "Microsoft Threat Intelligence Center (MSTIC)" 
		description = "Detects Golang package, function, and source file names observed in DEV-0530 Ransomware SiennaBlue samples" 
		hash1 = "f8fc2445a9814ca8cf48a979bff7f182d6538f4d1ff438cf259268e8b4b76f86" 
		hash2 = "541825cb652606c2ea12fd25a842a8b3456d025841c3a7f563655ef77bb67219"
	strings: 
		$holylocker_s1 = "C:/Users/user/Downloads/development/src/HolyLocker/Main/HolyLock/locker.go"
		$holylocker_s2 = "HolyLocker/Main.EncryptionExtension"
		$holylocker_s3 = "HolyLocker/Main.ContactEmail"
		$holylocker_s4 = "HolyLocker/communication.(*Client).GetPubkeyFromServer"
		$holylocker_s5 = "HolyLocker/communication.(*Client).AddNewKeyPairToIntranet"
		
		$holyrs_s1 = "C:/Users/user/Downloads/development/src/HolyGhostProject/MainFunc/HolyRS/HolyRS.go"
		$holyrs_s2 = "HolyGhostProject/MainFunc.ContactEmail"
		$holyrs_s3 = "HolyGhostProject/MainFunc.EncryptionExtension"
		$holyrs_s4 = "HolyGhostProject/Network.(*Client).GetPubkeyFromServer"
		$holyrs_s5 = "HolyGhostProject/Network.(*Client).AddNewKeyPairToIntranet"
		$s1 = "Our site : <b><a href=%s>H0lyGh0stWebsite"
		$s2 = ".h0lyenc"
		$go_prefix = "Go build ID:"
	condition: 
		uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and 
		filesize < 7MB and filesize > 1MB and 
		$go_prefix and all of ($s*) and (all of ($holylocker_*) or all of ($holyrs_*))
}

The post North Korean threat actor targets small and midsize businesses with H0lyGh0st ransomware appeared first on Microsoft Security Blog.

]]>
The many lives of BlackCat ransomware http://approjects.co.za/?big=en-us/security/blog/2022/06/13/the-many-lives-of-blackcat-ransomware/ Mon, 13 Jun 2022 16:00:00 +0000 The use of an unconventional programming language, multiple target devices and possible entry points, and affiliation with prolific threat activity groups have made the BlackCat ransomware a prevalent threat and a prime example of the growing ransomware-as-a-service (RaaS) gig economy.

The post The many lives of BlackCat ransomware appeared first on Microsoft Security Blog.

]]>

April 2023 update – Microsoft Threat Intelligence has shifted to a new threat actor naming taxonomy aligned around the theme of weather. DEV-0237 is now tracked as Pistachio Tempest and DEV-504 is now tracked as Velvet Tempest.

To learn about how the new taxonomy represents the origin, unique traits, and impact of threat actors, and to get a complete mapping of threat actor names, read this blog: Microsoft shifts to a new threat actor naming taxonomy.

The BlackCat ransomware, also known as ALPHV, is a prevalent threat and a prime example of the growing ransomware as a service (RaaS) gig economy. It’s noteworthy due to its unconventional programming language (Rust), multiple target devices and possible entry points, and affiliation with prolific threat activity groups. While BlackCat’s arrival and execution vary based on the actors deploying it, the outcome is the same—target data is encrypted, exfiltrated, and used for “double extortion,” where attackers threaten to release the stolen data to the public if the ransom isn’t paid.

First observed in November 2021, BlackCat initially made headlines because it was one of the first ransomware families written in the Rust programming language. By using a modern language for its payload, this ransomware attempts to evade detection, especially by conventional security solutions that might still be catching up in their ability to analyze and parse binaries written in such language. BlackCat can also target multiple devices and operating systems. Microsoft has observed successful attacks against Windows and Linux devices and VMWare instances.

As we previously explained, the RaaS affiliate model consists of multiple players: access brokers, who compromise networks and maintain persistence; RaaS operators, who develop tools; and RaaS affiliates, who perform other activities like moving laterally across the network and exfiltrating data before ultimately launching the ransomware payload. Thus, as a RaaS payload, how BlackCat enters a target organization’s network varies, depending on the RaaS affiliate that deploys it. For example, while the common entry vectors for these threat actors include remote desktop applications and compromised credentials, we also saw a threat actor leverage Exchange server vulnerabilities to gain target network access. In addition, at least two known affiliates are now adopting BlackCat: DEV-0237 (known for previously deploying Ryuk, Conti, and Hive) and DEV-0504 (previously deployed Ryuk, REvil, BlackMatter, and Conti).

Such variations and adoptions markedly increase an organization’s risk of encountering BlackCat and pose challenges in detecting and defending against it because these actors and groups have different tactics, techniques, and procedures (TTPs). Thus, no two BlackCat “lives” or deployments might look the same. Indeed, based on Microsoft threat data, the impact of this ransomware has been noted in various countries and regions in Africa, the Americas, Asia, and Europe.

Human-operated ransomware attacks like those that deploy BlackCat continue to evolve and remain one of the attackers’ preferred methods to monetize their attacks. Organizations should consider complementing their security best practices and policies with a comprehensive solution like Microsoft 365 Defender, which offers protection capabilities that correlate various threat signals to detect and block such attacks and their follow-on activities.

In this blog, we provide details about the ransomware’s techniques and capabilities. We also take a deep dive into two incidents we’ve observed where BlackCat was deployed, as well as additional information about the threat activity groups that now deliver it. Finally, we offer best practices and recommendations to help defenders protect their organizations against this threat, including hunting queries and product-specific mitigations.

BlackCat’s anatomy: Payload capabilities

As mentioned earlier, BlackCat is one of the first ransomware written in the Rust programming language. Its use of a modern language exemplifies a recent trend where threat actors switch to languages like Rust or Go for their payloads in their attempt to not only avoid detection by conventional security solutions but also to challenge defenders who may be trying to reverse engineer the said payloads or compare them to similar threats.

BlackCat can target and encrypt Windows and Linux devices and VMWare instances. It has extensive capabilities, including self-propagation configurable by an affiliate for their usage and to environment encountered.

In the instances we’ve observed where the BlackCat payload did not have administrator privileges, the payload was launched via dllhost.exe, which then launched the following commands below (Table 1) via cmd.exe. These commands could vary, as the BlackCat payload allows affiliates to customize execution to the environment.

The flags used by the attackers and the options available were the following: -s -d -f -c; –access-token; –propagated; -no-prop-servers

Screenshot of BlackCat ransomware deployment options and subcommands with corresponding descriptions.
Figure 1. BlackCat payload deployment options
CommandDescription
[service name] /stopStops running services to allow encryption of data  
vssadmin.exe Delete Shadows /all /quietDeletes backups to prevent recovery
wmic.exe Shadowcopy DeleteDeletes shadow copies
wmic csproduct get UUIDGets the Universally Unique Identifier (UUID) of the target device
reg add HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services \LanmanServer\Parameters /v MaxMpxCt /d 65535 /t REG_DWORD /fModifies the registry to change MaxMpxCt settings; BlackCat does this to increase the number of outstanding requests allowed (for example, SMB requests when distributing ransomware via its PsExec methodology)
for /F \”tokens=*\” %1 in (‘wevtutil.exe el’) DO wevtutil.exe cl \”%1\”Clears event logs
fsutil behavior set SymlinkEvaluation R2L:1Allows remote-to-local symbolic links; a symbolic link is a file-system object (for example, a file or folder) that points to another file system object, like a shortcut in many ways but more powerful
fsutil behavior set SymlinkEvaluation R2R:1Allows remote-to-remote symbolic links
net use \\[computer name]  /user:[domain]\[user] [password] /persistent:noMounts network share
Table 1. List of commands the BlackCat payload can run

User account control (UAC) bypass

BlackCat can bypass UAC, which means the payload will successfully run even if it runs from a non-administrator context. If the ransomware isn’t run with administrative privileges, it runs a secondary process under dllhost.exe with sufficient permissions needed to encrypt the maximum number of files on the system.

Domain and device enumeration

The ransomware can determine the computer name of the given system, local drives on a device, and the AD domain name and username on a device. The malware can also identify whether a user has domain admin privileges, thus increasing its capability of ransoming more devices.

Self-propagation

BlackCat discovers all servers that are connected to a network. The process first broadcasts NetBIOS Name Service (NBNC) messages to check for these additional devices. The ransomware then attempts to replicate itself on the answering servers using the credentials specified within the config via PsExec.

Hampering recovery efforts

BlackCat has numerous methods to make recovery efforts more difficult. The following are commands that might be launched by the payload, as well as their purposes:

  • Modify boot loader
    • “C:\Windows\system32\cmd.exe” /c “bcdedit /set {default}”
    • “C:\Windows\system32\cmd.exe” /c “bcdedit /set {default} recoveryenabled No”
  • Delete volume shadow copies
    • “C:\Windows\system32\cmd.exe” /c “vssadmin.exe Delete Shadows /all /quiet”
    • “C:\Windows\system32\cmd.exe” /c “wmic.exe Shadowcopy Delete”
  • Clear Windows event logs
    • “C:\Windows\system32\cmd.exe” /c “cmd.exe /c  for /F \”tokens=*\” Incorrect function. in (‘ wevtutil.exe el ‘) DO wevtutil.exe cl \”Incorrect function. \””

Slinking its way in: Identifying attacks that can lead to BlackCat ransomware

Consistent with the RaaS model, threat actors utilize BlackCat as an additional payload to their ongoing campaigns. While their TTPs remain largely the same (for example, using tools like Mimikatz and PsExec to deploy the ransomware payload), BlackCat-related compromises have varying entry vectors, depending on the ransomware affiliate conducting the attack. Therefore, the pre-ransom steps of these attacks can also be markedly different.

For example, our research noted that one affiliate that deployed BlackCat leveraged unpatched Exchange servers or used stolen credentials to access target networks. The following sections detail the end-to-end attack chains of these two incidents we’ve observed.

Case study 1: Entry via unpatched Exchange

In one incident we’ve observed, attackers took advantage of an unpatched Exchange server to enter the target organization.

Diagram with icons and timeline depicting different attack stages, starting with the exploitation of an Exchange server vulnerability and ending with the deployment of BlackCat ransomware and double extortion.
Figure 2. Observed BlackCat ransomware attack chain via Exchange vulnerability exploitation

Discovery

Upon exploiting the Exchange vulnerability, the attackers launched the following discovery commands to gather information about the device they had compromised:

  • cmd.exe and the commands ver and systeminfo – to collect operating system information
  • net.exe – to determine domain computers, domain controllers, and domain admins in the environment

After executing these commands, the attackers navigated through directories and discovered a passwords folder that granted them access to account credentials they could use in the subsequent stages of the attack. They also used the del command to delete files related to their initial compromise activity.

The attackers then mounted a network share using net use and the stolen credentials and began looking for potential lateral movement targets using a combination of methods. First, they used WMIC.exe using the previously gathered device name as the node, launched the command whoami /all, and pinged google.com to check network connectivity. The output of the results were then written to a .log file on the mounted share. Second, the attackers used PowerShell.exe with the cmdlet Get-ADComputer and a filter to gather the last sign-in event.

Lateral movement

Two and a half days later, the attackers signed into one of the target devices they found during their initial discovery efforts using compromised credentials via interactive sign-in. They opted for a credential theft technique that didn’t require dropping a file like Mimikatz that antivirus products might detect. Instead, they opened Taskmgr.exe, created a dump file of the LSASS.exe process, and saved the file to a ZIP archive.

The attackers continued their previous discovery efforts using a PowerShell script version of ADRecon (ADRecon.ps1), which is a tool designed to gather extensive information about an Active Directory (AD) environment. The attacker followed up this action with a net scanning tool that opened connections to devices in the organization on server message block (SMB) and remote desktop protocol (RDP). For discovered devices, the attackers attempted to navigate to various network shares and used the Remote Desktop client (mstsc.exe) to sign into these devices, once again using the compromised account credentials.

These behaviors continued for days, with the attackers signing into numerous devices throughout the organization, dumping credentials, and determining what devices they could access.

Collection and exfiltration

On many of the devices the attackers signed into, efforts were made to collect and exfiltrate extensive amounts of data from the organization, including domain settings and information and intellectual property. To do this, the attackers used both MEGAsync and Rclone, which were renamed as legitimate Windows process names (for example, winlogon.exe, mstsc.exe).

Exfiltration of domain information to identify targets for lateral movement

Collecting domain information allowed the attackers to progress further in their attack because the said information could identify potential targets for lateral movement or those that would help the attackers distribute their ransomware payload. To do this, the attackers once again used ADRecon.ps1with numerous PowerShell cmdlets such as the following:

  • Get-ADRGPO – gets group policy objects (GPO) in a domain
  • Get-ADRDNSZone – gets all DNS zones and records in a domain
  • Get-ADRGPLink – gets all group policy links applied to a scope of management in a domain

Additionally, the attackers dropped and used ADFind.exe commands to gather information on persons, computers, organizational units, and trust information, as well as pinged dozens of devices to check connectivity.

Exfiltration for double extortion

Intellectual property theft likely allowed the attackers to threaten the release of information if the subsequent ransom wasn’t paid—a practice known as “double extortion.” To steal intellectual property, the attackers targeted and collected data from SQL databases. They also navigated through directories and project folders, among others, of each device they could access, then exfiltrated the data they found in those. 

The exfiltration occurred for multiple days on multiple devices, which allowed the attackers to gather large volumes of information that they could then use for double extortion.

Encryption and ransom

It was a full two weeks from the initial compromise before the attackers progressed to ransomware deployment, thus highlighting the need for triaging and scoping out alert activity to understand accounts and the scope of access an attacker gained from their activity. Distribution of the ransomware payload using PsExec.exe proved to be the most common attack method.

Screenshot of the ransom note displayed by BlackCat ransomware. It informs affected users that sensitive data from their network has been downloaded and that they must act quicky and pay the ransom if they don't want the data to be published.
Figure 3. Ransom note displayed by BlackCat upon successful infection

Case study 2: Entry via compromised credentials

In another incident we observed, we found that a ransomware affiliate gained initial access to the environment via an internet-facing Remote Desktop server using compromised credentials to sign in.

Diagram with icons and timeline depicting different attack stages, starting with the attacker using stolen credentials to sign into Remote Desktop and ending with the deployment of BlackCat ransomware.
Figure 4. Observed BlackCat ransomware attack chain via stolen credentials

Lateral movement

Once the attackers gained access to the target environment, they then used SMB to copy over and launch the Total Deployment Software administrative tool, allowing remote automated software deployment. Once this tool was installed, the attackers used it to install ScreenConnect (now known as ConnectWise), a remote desktop software application.

Credential theft

ScreenConnect was used to establish a remote session on the device, allowing attackers interactive control. With the device in their control, the attackers used cmd.exe to update the Registry to allow cleartext authentication via WDigest, and thus saved the attackers time by not having to crack password hashes. Shortly later, they used the Task Manager to dump the LSASS.exe process to steal the password, now in cleartext.

Eight hours later, the attackers reconnected to the device and stole credentials again. This time, however, they dropped and launched Mimikatz for the credential theft routine, likely because it can grab credentials beyond those stored in LSASS.exe. The attackers then signed out.

Persistence and encryption

A day later, the attackers returned to the environment using ScreenConnect. They used PowerShell to launch a command prompt process and then added a user account to the device using net.exe. The new user was then added to the local administrator group via net.exe.

Afterward, the attackers signed in using their newly created user account and began dropping and launching the ransomware payload. This account would also serve as a means of additional persistence beyond ScreenConnect and their other footholds in the environment to allow them to re-establish their presence, if needed. Ransomware adversaries are not above ransoming the same organization twice if access is not fully remediated.

Chrome.exe was used to navigate to a domain hosting the BlackCat payload. Notably, the folder structure included the organization name, indicating that this was a pre-staged payload specifically for the organization. Finally, the attackers launched the BlackCat payload on the device to encrypt its data.

Ransomware affiliates deploying BlackCat

Apart from the incidents discussed earlier, we’ve also observed two of the most prolific affiliate groups associated with ransomware deployments have switched to deploying BlackCat. Payload switching is typical for some RaaS affiliates to ensure business continuity or if there’s a possibility of better profit. Unfortunately for organizations, such adoption further adds to the challenge of detecting related threats.

Microsoft tracks one of these affiliate groups as DEV-0237. Also known as FIN12, DEV-0237 is notable for its distribution of Hive, Conti, and Ryuk ransomware. We’ve observed that this group added BlackCat to their list of distributed payloads beginning March 2022. Their switch to BlackCat from their last used payload (Hive) is suspected to be due to the public discourse around the latter’s decryption methodologies.

DEV-0504 is another active affiliate group that we’ve seen switching to BlackCat for their ransomware attacks. Like many RaaS affiliate groups, the following TTPs might be observed in a DEV-0504 attack:

  • Entry vector that can involve the affiliate remotely signing into devices with compromised credentials, such as into devices running software solutions that allow for remote work
  • The attackers’ use of their access to conduct discovery on the domain
  • Lateral movement that potentially uses the initial compromised account
  • Credential theft with tools like Mimikatz and Rubeus

DEV-0504 typically exfiltrates data on devices they compromise from the organization using a malicious tool such as StealBit—often named “send.exe” or “sender.exe”. PsExec is then used to distribute the ransomware payload. The group has been observed delivering the following ransom families before their adoption of BlackCat beginning December 2021:

  • BlackMatter
  • Conti
  • LockBit 2.0
  • Revil
  • Ryuk

Defending against BlackCat ransomware

Today’s ransomware attacks have become more impactful because of their growing industrialization through the RaaS affiliate model and the increasing trend of double extortion. The incidents we’ve observed related to the BlackCat ransomware leverage these two factors, making this threat durable against conventional security and defense approaches that only focus on detecting the ransomware payloads. Detecting threats like BlackCat, while good, is no longer enough as human-operated ransomware continues to grow, evolve, and adapt to the networks they’re deployed or the attackers they work for.

Instead, organizations must shift their defensive strategies to prevent the end-to-end attack chain. As noted above, while attackers’ entry points may vary, their TTPs remain largely the same. In addition, these types of attacks continue to take advantage of an organization’s poor credential hygiene and legacy configurations or misconfigurations to succeed. Therefore, defenders should address these common paths and weaknesses by hardening their networks through various best practices such as access monitoring and proper patch management. We provide detailed steps on building these defensive strategies against ransomware in this blog.

In the BlackCat-related incidents we’ve observed, the common entry points for ransomware affiliates were via compromised credentials to access internet-facing remote access software and unpatched Exchange servers. Therefore, defenders should review their organization’s identity posture, carefully monitor external access, and locate vulnerable Exchange servers in their environment to update as soon as possible. The financial impact, reputation damage, and other repercussions that stem from attacks involving ransomware like BlackCat are not worth forgoing downtime, service interruption, and other pain points related to applying security updates and implementing best practices.

Leveraging Microsoft 365 Defender’s comprehensive threat defense capabilities

Microsoft 365 Defender helps protect organizations from attacks that deliver the BlackCat ransomware and other similar threats by providing cross-domain visibility and coordinated threat defense. It uses multiple layers of dynamic protection technologies and correlates threat data from email, endpoints, identities, and cloud apps. Microsoft Defender for Endpoint detects tools like Mimikatz, the actual BlackCat payload, and subsequent attacker behavior. Threat and vulnerability management capabilities also help discover vulnerable or misconfigured devices across different platforms; such capabilities could help detect and block possible exploitation attempts on vulnerable devices, such as those running Exchange. Finally, advanced hunting lets defenders create custom detections to proactively surface this ransomware and other related threats.

Additional mitigations and recommendations

Defenders can also follow the following steps to reduce the impact of this ransomware:

Microsoft 365 Defender customers can also apply the additional mitigations below:

  • Use advanced protection against ransomware.
  • Turn on tamper protection in Microsoft Defender for Endpoint to prevent malicious changes to security settings. Enable network protection in Microsoft Defender for Endpoint and Microsoft 365 Defender to prevent applications or users from accessing malicious domains and other malicious content on the internet.
  • Ensure Exchange servers have applied the mitigations referenced in the related Threat Analytics report.
  • Turn on the following attack surface reduction rules to block or audit activity associated with this threat:
    • Block credential stealing from the Windows local security authority subsystem (lsass.exe)
    • Block process creations originating from PSExec and WMI commands
    • Block executable files from running unless they meet a prevalence, age, or trusted list criterion

For a full list of ransomware mitigations regardless of threat, refer to this article: Rapidly protect against ransomware and extortion.

Learn how you can stop attacks through automated, cross-domain security and built-in AI with Microsoft Defender 365.

Microsoft 365 Defender Threat Intelligence Team

Appendix

Microsoft 365 Defender detections

Microsoft Defender Antivirus

Microsoft Defender for Endpoint EDR

Alerts with the following titles in the security center can indicate threat activity on your network:

  • An active ‘BlackCat’ ransomware was detected
  • ‘BlackCat’ ransomware was detected
  • BlackCat ransomware

Hunting queries

Microsoft 365 Defender

To locate possible ransomware activity, run the following queries.

Suspicious process execution in PerfLogs path

Use this query to look for processes executing in PerfLogs—a common path used to place the ransomware payloads.

DeviceProcessEvents
| where InitiatingProcessFolderPath has "PerfLogs"
| where InitiatingProcessFileName matches regex "[a-z]{3}.exe"
| extend Length = strlen(InitiatingProcessFileName)
| where Length == 7

Suspicious registry modification of MaxMpxCt parameters

Use this query to look for suspicious running processes that modify registry settings to increase the number of outstanding requests allowed (for example, SMB requests when distributing ransomware via its PsExec methodology).

DeviceProcessEvents
| where ProcessCommandLine has_all("LanmanServer", "parameters", "MaxMpxCt", "65535")

Suspicious command line indicative of BlackCat ransom payload execution

Use these queries to look for instances of the BlackCat payload executing based on a required command argument for it to successfully encrypt ‘–access-token’.

DeviceProcessEvents
| where ProcessCommandLine has_all("--access-token", "-v") 
| extend CommandArguments = split(ProcessCommandLine, " ")
| mv-expand CommandArguments
| where CommandArguments matches regex "^[A-Fa-f0-9]{64}$"
DeviceProcessEvents
| where InitiatingProcessCommandLine has "--access-token"
| where ProcessCommandLine has "get uuid"

Suspected data exfiltration

Use this query to look for command lines that indicate data exfiltration and the indication that an attacker may attempt double extortion.

DeviceNetworkEvents
| where InitiatingProcessCommandLine has_all("copy", "--max-age", "--ignore-existing", "--multi-thread-streams", "--transfers") and InitiatingProcessCommandLine has_any("ftp", "ssh", "-q")

The post The many lives of BlackCat ransomware appeared first on Microsoft Security Blog.

]]>
Ransomware as a service: Understanding the cybercrime gig economy and how to protect yourself http://approjects.co.za/?big=en-us/security/blog/2022/05/09/ransomware-as-a-service-understanding-the-cybercrime-gig-economy-and-how-to-protect-yourself/ Mon, 09 May 2022 13:00:00 +0000 Microsoft coined the term “human-operated ransomware” to clearly define a class of attack driven by expert human intelligence at every step of the attack chain and culminate in intentional business disruption and extortion. In this blog, we explain the ransomware as a service (RaaS) affiliate model and disambiguate between the attacker tools and the various threat actors at play during a security incident.

The post Ransomware as a service: Understanding the cybercrime gig economy and how to protect yourself appeared first on Microsoft Security Blog.

]]>

April 2023 update – Microsoft Threat Intelligence has shifted to a new threat actor naming taxonomy aligned around the theme of weather. To learn more about this evolution, how the new taxonomy represents the origin, unique traits, and impact of threat actors, and a complete mapping of threat actor names, read this blog: Microsoft shifts to a new threat actor naming taxonomy.

September 2022 update – New information about recent Qakbot campaigns leading to ransomware deployment.

July 2022 update – New information about DEV-0206-associated activity wherein existing Raspberry Robin infections are used to deploy FakeUpdates, which then leads to follow-on actions resembling DEV-0243.

June 2022 update – More details in the Threat actors and campaigns section, including recently observed activities from DEV-0193 (Trickbot LLC), DEV-0504, DEV-0237, DEV-0401, and a new section on Qakbot campaigns that lead to ransomware deployments.

Microsoft processes 24 trillion signals every 24 hours, and we have blocked billions of attacks in the last year alone. Microsoft Security tracks more than 35 unique ransomware families and 250 unique threat actors across observed nation-state, ransomware, and criminal activities.

That depth of signal intelligence gathered from various domains—identity, email, data, and cloud—provides us with insight into the gig economy that attackers have created with tools designed to lower the barrier for entry for other attackers, who in turn continue to pay dividends and fund operations through the sale and associated “cut” from their tool’s success.

The cybercriminal economy is a continuously evolving connected ecosystem of many players with different techniques, goals, and skillsets. In the same way our traditional economy has shifted toward gig workers for efficiency, criminals are learning that there’s less work and less risk involved by renting or selling their tools for a portion of the profits than performing the attacks themselves. This industrialization of the cybercrime economy has made it easier for attackers to use ready-made penetration testing and other tools to perform their attacks.

Within this category of threats, Microsoft has been tracking the trend in the ransomware as a service (RaaS) gig economy, called human-operated ransomware, which remains one of the most impactful threats to organizations. We coined the industry term “human-operated ransomware” to clarify that these threats are driven by humans who make decisions at every stage of their attacks based on what they find in their target’s network.

Unlike the broad targeting and opportunistic approach of earlier ransomware infections, attackers behind these human-operated campaigns vary their attack patterns depending on their discoveries—for example, a security product that isn‘t configured to prevent tampering or a service that’s running as a highly privileged account like a domain admin. Attackers can use those weaknesses to elevate their privileges to steal even more valuable data, leading to a bigger payout for them—with no guarantee they’ll leave their target environment once they’ve been paid. Attackers are also often more determined to stay on a network once they gain access and sometimes repeatedly monetize that access with additional attacks using different malware or ransomware payloads if they aren’t successfully evicted.

Ransomware attacks have become even more impactful in recent years as more ransomware as a service ecosystems have adopted the double extortion monetization strategy. All ransomware is a form of extortion, but now, attackers are not only encrypting data on compromised devices but also exfiltrating it and then posting or threatening to post it publicly to pressure the targets into paying the ransom. Most ransomware attackers opportunistically deploy ransomware to whatever network they get access to, and some even purchase access to networks from other cybercriminals. Some attackers prioritize organizations with higher revenues, while others prefer specific industries for the shock value or type of data they can exfiltrate.

All human-operated ransomware campaigns—all human-operated attacks in general, for that matter—share common dependencies on security weaknesses that allow them to succeed. Attackers most commonly take advantage of an organization’s poor credential hygiene and legacy configurations or misconfigurations to find easy entry and privilege escalation points in an environment. 

In this blog, we detail several of the ransomware ecosystems  using the RaaS model, the importance of cross-domain visibility in finding and evicting these actors, and best practices organizations can use to protect themselves from this increasingly popular style of attack. We also offer security best practices on credential hygiene and cloud hardening, how to address security blind spots, harden internet-facing assets to understand your perimeter, and more. Here’s a quick table of contents:

  1. How RaaS redefines our understanding of ransomware incidents
    • The RaaS affiliate model explained
    • Access for sale and mercurial targeting
  2. “Human-operated” means human decisions
    • Exfiltration and double extortion
    • Persistent and sneaky access methods
  3. Threat actors and campaigns deep dive: Threat intelligence-driven response to human-operated ransomware attacks
  4. Defending against ransomware: Moving beyond protection by detection

How RaaS redefines our understanding of ransomware incidents

With ransomware being the preferred method for many cybercriminals to monetize attacks, human-operated ransomware remains one of the most impactful threats to organizations today, and it only continues to evolve. This evolution is driven by the “human-operated” aspect of these attacks—attackers make informed and calculated decisions, resulting in varied attack patterns tailored specifically to their targets and iterated upon until the attackers are successful or evicted.

In the past, we’ve observed a tight relationship between the initial entry vector, tools, and ransomware payload choices in each campaign of one strain of ransomware. The RaaS affiliate model, which has allowed more criminals, regardless of technical expertise, to deploy ransomware built or managed by someone else, is weakening this link. As ransomware deployment becomes a gig economy, it has become more difficult to link the tradecraft used in a specific attack to the ransomware payload developers.

Reporting a ransomware incident by assigning it with the payload name gives the impression that a monolithic entity is behind all attacks using the same ransomware payload and that all incidents that use the ransomware share common techniques and infrastructure. However, focusing solely on the ransomware stage obscures many stages of the attack that come before, including actions like data exfiltration and additional persistence mechanisms, as well as the numerous detection and protection opportunities for network defenders.

We know, for example, that the underlying techniques used in human-operated ransomware campaigns haven’t changed very much over the years—attacks still prey on the same security misconfigurations to succeed. Securing a large corporate network takes disciplined and sustained focus, but there’s a high ROI in implementing critical controls that prevent these attacks from having a wider impact, even if it’s only possible on the most critical assets and segments of the network. 

Without the ability to steal access to highly privileged accounts, attackers can’t move laterally, spread ransomware widely, access data to exfiltrate, or use tools like Group Policy to impact security settings. Disrupting common attack patterns by applying security controls also reduces alert fatigue in security SOCs by stopping the attackers before they get in. This can also prevent unexpected consequences of short-lived breaches, such as exfiltration of network topologies and configuration data that happens in the first few minutes of execution of some trojans.

In the following sections, we explain the RaaS affiliate model and disambiguate between the attacker tools and the various threat actors at play during a security incident. Gaining this clarity helps surface trends and common attack patterns that inform defensive strategies focused on preventing attacks rather than detecting ransomware payloads. Threat intelligence and insights from this research also enrich our solutions like Microsoft 365 Defender, whose comprehensive security capabilities help protect customers by detecting RaaS-related attack attempts.

The RaaS affiliate model explained

The cybercriminal economy—a connected ecosystem of many players with different techniques, goals, and skillsets—is evolving. The industrialization of attacks has progressed from attackers using off-the-shelf tools, such as Cobalt Strike, to attackers being able to purchase access to networks and the payloads they deploy to them. This means that the impact of a successful ransomware and extortion attack remains the same regardless of the attacker’s skills.

RaaS is an arrangement between an operator and an affiliate. The RaaS operator develops and maintains the tools to power the ransomware operations, including the builders that produce the ransomware payloads and payment portals for communicating with victims. The RaaS program may also include a leak site to share snippets of data exfiltrated from victims, allowing attackers to show that the exfiltration is real and try to extort payment. Many RaaS programs further incorporate a suite of extortion support offerings, including leak site hosting and integration into ransom notes, as well as decryption negotiation, payment pressure, and cryptocurrency transaction services

RaaS thus gives a unified appearance of the payload or campaign being a single ransomware family or set of attackers. However, what happens is that the RaaS operator sells access to the ransom payload and decryptor to an affiliate, who performs the intrusion and privilege escalation and who is responsible for the deployment of the actual ransomware payload. The parties then split the profit. In addition, RaaS developers and operators might also use the payload for profit, sell it, and run their campaigns with other ransomware payloads—further muddying the waters when it comes to tracking the criminals behind these actions.

Diagram showing the relationship between players in the ransomware-as-a-service affiliate model. Access brokers compromise networks and persist on systems. The RaaS operator develops and maintain tools. The RaaS affiliate performs the attack.
Figure 1. How the RaaS affiliate model enables ransomware attacks

Access for sale and mercurial targeting

A component of the cybercriminal economy is selling access to systems to other attackers for various purposes, including ransomware. Access brokers can, for instance, infect systems with malware or a botnet and then sell them as a “load”. A load is designed to install other malware or backdoors onto the infected systems for other criminals. Other access brokers scan the internet for vulnerable systems, like exposed Remote Desktop Protocol (RDP) systems with weak passwords or unpatched systems, and then compromise them en masse to “bank” for later profit. Some advertisements for the sale of initial access specifically cite that a system isn’t managed by an antivirus or endpoint detection and response (EDR) product and has a highly privileged credential such as Domain Administrator associated with it to fetch higher prices.

Most ransomware attackers opportunistically deploy ransomware to whatever network they get access to. Some attackers prioritize organizations with higher revenues, while some target specific industries for the shock value or type of data they can exfiltrate (for example, attackers targeting hospitals or exfiltrating data from technology companies). In many cases, the targeting doesn’t manifest itself as specifically attacking the target’s network, instead, the purchase of access from an access broker or the use of existing malware infection to pivot to ransomware activities.

In some ransomware attacks, the affiliates who bought a load or access may not even know or care how the system was compromised in the first place and are just using it as a “jump server” to perform other actions in a network. Access brokers often list the network details for the access they are selling, but affiliates aren’t usually interested in the network itself but rather the monetization potential. As a result, some attacks that seem targeted to a specific industry might simply be a case of affiliates purchasing access based on the number of systems they could deploy ransomware to and the perceived potential for profit.

“Human-operated” means human decisions

Microsoft coined the term “human-operated ransomware” to clearly define a class of attacks driven by expert human intelligence at every step of the attack chain and culminate in intentional business disruption and extortion. Human-operated ransomware attacks share commonalities in the security misconfigurations of which they take advantage and the manual techniques used for lateral movement and persistence. However, the human-operated nature of these actions means that variations in attacks—including objectives and pre-ransom activity—evolve depending on the environment and the unique opportunities identified by the attackers.

These attacks involve many reconnaissance activities that enable human operators to profile the organization and know what next steps to take based on specific knowledge of the target. Many of the initial access campaigns that provide access to RaaS affiliates perform automated reconnaissance and exfiltration of information collected in the first few minutes of an attack.

After the attack shifts to a hands-on-keyboard phase, the reconnaissance and activities based on this knowledge can vary, depending on the tools that come with the RaaS and the operator’s skill. Frequently attackers query for the currently running security tools, privileged users, and security settings such as those defined in Group Policy before continuing their attack. The data discovered via this reconnaissance phase informs the attacker’s next steps.

If there’s minimal security hardening to complicate the attack and a highly privileged account can be gained immediately, attackers move directly to deploying ransomware by editing a Group Policy. The attackers take note of security products in the environment and attempt to tamper with and disable these, sometimes using scripts or tools provided with RaaS purchase that try to disable multiple security products at once, other times using specific commands or techniques performed by the attacker.  

This human decision-making early in the reconnaissance and intrusion stages means that even if a target’s security solutions detect specific techniques of an attack, the attackers may not get fully evicted from the network and can use other collected knowledge to attempt to continue the attack in ways that bypass security controls. In many instances, attackers test their attacks “in production” from an undetected location in their target’s environment, deploying tools or payloads like commodity malware. If these tools or payloads are detected and blocked by an antivirus product, the attackers simply grab a different tool, modify their payload, or tamper with the security products they encounter. Such detections could give SOCs a false sense of security that their existing solutions are working. However, these could merely serve as a smokescreen to allow the attackers to further tailor an attack chain that has a higher probability of success. Thus, when the attack reaches the active attack stage of deleting backups or shadow copies, the attack would be minutes away from ransomware deployment. The adversary would likely have already performed harmful actions like the exfiltration of data. This knowledge is key for SOCs responding to ransomware: prioritizing investigation of alerts or detections of tools like Cobalt Strike and performing swift remediation actions and incident response (IR) procedures are critical for containing a human adversary before the ransomware deployment stage.

Exfiltration and double extortion

Ransomware attackers often profit simply by disabling access to critical systems and causing system downtime. Although that simple technique often motivates victims to pay, it is not the only way attackers can monetize their access to compromised networks. Exfiltration of data and “double extortion,” which refers to attackers threatening to leak data if a ransom hasn’t been paid, has also become a common tactic among many RaaS affiliate programs—many of them offering a unified leak site for their affiliates. Attackers take advantage of common weaknesses to exfiltrate data and demand ransom without deploying a payload.

This trend means that focusing on protecting against ransomware payloads via security products or encryption, or considering backups as the main defense against ransomware, instead of comprehensive hardening, leaves a network vulnerable to all the stages of a human-operated ransomware attack that occur before ransomware deployment. This exfiltration can take the form of using tools like Rclone to sync to an external site, setting up email transport rules, or uploading files to cloud services. With double extortion, attackers don’t need to deploy ransomware and cause downtime to extort money. Some attackers have moved beyond the need to deploy ransomware payloads and are shifting straight to extortion models or performing the destructive objectives of their attacks by directly deleting cloud resources. One such extortion attackers is DEV-0537 (also known as LAPSUS$), which is profiled below.  

Persistent and sneaky access methods

Paying the ransom may not reduce the risk to an affected network and potentially only serves to fund cybercriminals. Giving in to the attackers’ demands doesn’t guarantee that attackers ever “pack their bags” and leave a network. Attackers are more determined to stay on a network once they gain access and sometimes repeatedly monetize attacks using different malware or ransomware payloads if they aren’t successfully evicted.

The handoff between different attackers as transitions in the cybercriminal economy occur means that multiple attackers may retain persistence in a compromised environment using an entirely different set of tools from those used in a ransomware attack. For example, initial access gained by a banking trojan leads to a Cobalt Strike deployment, but the RaaS affiliate that purchased the access may choose to use a less detectable remote access tool such as TeamViewer to maintain persistence on the network to operate their broader series of campaigns. Using legitimate tools and settings to persist versus malware implants such as Cobalt Strike is a popular technique among ransomware attackers to avoid detection and remain resident in a network for longer.

Some of the common enterprise tools and techniques for persistence that Microsoft has observed being used include:

  • AnyDesk
  • Atera Remote Management
  • ngrok.io
  • Remote Manipulator System
  • Splashtop
  • TeamViewer

Another popular technique attackers perform once they attain privilege access is the creation of new backdoor user accounts, whether local or in Active Directory. These newly created accounts can then be added to remote access tools such as a virtual private network (VPN) or Remote Desktop, granting remote access through accounts that appear legitimate on the network. Ransomware attackers have also been observed editing the settings on systems to enable Remote Desktop, reduce the protocol’s security, and add new users to the Remote Desktop Users group.

The time between initial access to a hands-on keyboard deployment can vary wildly depending on the groups and their workloads or motivations. Some activity groups can access thousands of potential targets and work through these as their staffing allows, prioritizing based on potential ransom payment over several months. While some activity groups may have access to large and highly resourced companies, they prefer to attack smaller companies for less overall ransom because they can execute the attack within hours or days. In addition, the return on investment is higher from companies that can’t respond to a major incident. Ransoms of tens of millions of dollars receive much attention but take much longer to develop. Many groups prefer to ransom five to 10 smaller targets in a month because the success rate at receiving payment is higher in these targets. Smaller organizations that can’t afford an IR team are often more likely to pay tens of thousands of dollars in ransom than an organization worth millions of dollars because the latter has a developed IR capability and is likely to follow legal advice against paying. In some instances, a ransomware associate threat actor may have an implant on a network and never convert it to ransom activity. In other cases, initial access to full ransom (including handoff from an access broker to a RaaS affiliate) takes less than an hour.

Funnel diagram showing targeting and rate of success. Given 2,500 potential target orgs, 60 encounter activity associated with known ransomware attackers. Out of these, 20 are successfully compromised, and 1 organization sees a successful ransomware event.
Figure 2. Human-operated ransomware targeting and rate of success, based on a sampling of Microsoft data over six months between 2021 and 2022

The human-driven nature of these attacks and the scale of possible victims under control of ransomware-associated threat actors underscores the need to take targeted proactive security measures to harden networks and prevent these attacks in their early stages.

Threat actors and campaigns deep dive: Threat intelligence-driven response to human-operated ransomware attacks

For organizations to successfully respond to evict an active attacker, it’s important to understand the active stage of an ongoing attack. In the early attack stages, such as deploying a banking trojan, common remediation efforts like isolating a system and resetting exposed credentials may be sufficient. As the attack progresses and the attacker performs reconnaissance activities and exfiltration, it’s important to implement an incident response process that scopes the incident to address the impact specifically. Using a threat intelligence-driven methodology for understanding attacks can assist in determining incidents that need additional scoping.

In the next sections, we provide a deep dive into the following prominent ransomware threat actors and their campaigns to increase community understanding of these attacks and enable organizations to better protect themselves:

Microsoft threat intelligence directly informs our products as part of our commitment to track adversaries and protect customers. Microsoft 365 Defender customers should prioritize alerts titled “Ransomware-linked emerging threat activity group detected”. We also add the note “Ongoing hands-on-keyboard attack” to alerts that indicate a human attacker is in the network. When these alerts are raised, it’s highly recommended to initiate an incident response process to scope the attack, isolate systems, and regain control of credentials attackers may be in control of.

A note on threat actor naming: as part of Microsoft’s ongoing commitment to track both nation-state and cybercriminal threat actors, we refer to the unidentified threat actors as a “development group”. We use a naming structure with a prefix of “DEV” to indicate an emerging threat group or unique activity during investigation. When a nation-state group moves out of the DEV stage, we use chemical elements (for example, PHOSPHORUS and NOBELIUM) to name them. On the other hand, we use volcano names (such as ELBRUS) for ransomware or cybercriminal activity groups that have moved out of the DEV state. In the cybercriminal economy, relationships between groups change very rapidly. Attackers are known to hire talent from other cybercriminal groups or use “contractors,” who provide gig economy-style work on a limited time basis and may not rejoin the group. This shifting nature means that many of the groups Microsoft tracks are labeled as DEV, even if we have a concrete understanding of the nature of the activity group.

DEV-0193 cluster (Trickbot LLC): The most prolific ransomware group today

A vast amount of the current cybercriminal economy connects to a nexus of activity that Microsoft tracks as DEV-0193, also referred to as Trickbot LLC. DEV-0193 is responsible for developing, distributing, and managing many different payloads, including Trickbot, Bazaloader, and AnchorDNS. In addition, DEV-0193 managed the Ryuk RaaS program before the latter’s shutdown in June 2021, and Ryuk’s successor, Conti as well as Diavol. Microsoft has been tracking the activities of DEV-0193 since October 2020 and has observed their expansion from developing and distributing the Trickbot malware to becoming the most prolific ransomware-associated cybercriminal activity group active today. 

DEV-0193’s actions and use of the cybercriminal gig economy means they often add new members and projects and utilize contractors to perform various parts of their intrusions. As other malware operations have shut down for various reasons, including legal actions, DEV-0193 has hired developers from these groups. Most notable are the acquisitions of developers from Emotet, Qakbot, and IcedID, bringing them to the DEV-0193 umbrella.

A subgroup of DEV-0193, which Microsoft tracks as DEV-0365, provides infrastructure as a service for cybercriminals. Most notably, DEV-0365 provides Cobalt Strike Beacon as a service. These DEV-0365 Beacons have replaced unique C2 infrastructure in many active malware campaigns. DEV-0193 infrastructure has also been implicated in attacks deploying novel techniques, including exploitation of CVE-2021-40444. 

The leaked chat files from a group publicly labeled as the “Conti Group” in February 2022 confirm the wide scale of DEV-0193 activity tracked by Microsoft. Based on our telemetry from 2021 and 2022, Conti has become one of the most deployed RaaS ecosystems, with multiple affiliates concurrently deploying their payload—even as other RaaS ecosystems (DarkSide/BlackMatter and REvil) ceased operations. However, payload-based attribution meant that much of the activity that led to Conti ransomware deployment was attributed to the “Conti Group,” even though many affiliates had wildly different tradecraft, skills, and reporting structures. Some Conti affiliates performed small-scale intrusions using the tools offered by the RaaS, while others performed weeks-long operations involving data exfiltration and extortion using their own techniques and tools. One of the most prolific and successful Conti affiliates—and the one responsible for developing the “Conti Manual” leaked in August 2021—is tracked as DEV-0230. This activity group also developed and deployed the FiveHands and HelloKitty ransomware payloads and often gained access to an organization via DEV-0193’s BazaLoader infrastructure.

Microsoft hasn’t observed a Conti deployment in our data since April 19, 2022, suggesting that the Conti program has shut down or gone on hiatus, potentially in response to the visibility of DEV-0230’s deployment of Conti in high-profile incidents or FBI’s announcement of a reward for information related to Conti. As can be expected when a RaaS program shuts down, the gig economy nature of the ransomware ecosystem means that affiliates can easily shift between payloads. Conti affiliates who had previously deployed Conti have moved on to other RaaS payloads. For example, DEV-0506 was deploying BlackBasta part-time before the Conti shutdown and is now deploying it regularly. Similarly, DEV-0230 shifted to deploying QuantumLocker around April 23, 2022.

ELBRUS: (Un)arrested development

ELBRUS, also known as FIN7, has been known to be in operation since 2012 and has run multiple campaigns targeting a broad set of industries for financial gain. ELBRUS has deployed point-of-sale (PoS) and ATM malware to collect payment card information from in-store checkout terminals. They have also targeted corporate personnel who have access to sensitive financial data, including individuals involved in SEC filings.

In 2018, this activity group made headlines when three of its members were arrested. In May 2020, another arrest was made for an individual with alleged involvement with ELBRUS. However, despite law enforcement actions against suspected individual members, Microsoft has observed sustained campaigns from the ELBRUS group itself during these periods.

ELBRUS is responsible for developing and distributing multiple custom malware families used for persistence, including JSSLoader and Griffon. ELBRUS has also created fake security companies called “Combi Security” and “Bastion Security” to facilitate the recruitment of employees to their operations under the pretense of working as penetration testers.

In 2020 ELBRUS transitioned from using PoS malware to deploying ransomware as part of a financially motivated extortion scheme, specifically deploying the MAZE and Revil RaaS families. ELBRUS developed their own RaaS ecosystem named DarkSide. They deployed DarkSide payloads as part of their operations and recruited and managed affiliates that deployed the DarkSide ransomware. The tendency to report on ransomware incidents based on payload and attribute it to a monolithic gang often obfuscates the true relationship between the attackers, which is very accurate of the DarkSide RaaS. Case in point, one of the most infamous DarkSide deployments wasn’t performed by ELBRUS but by a ransomware as a service affiliate Microsoft tracks as DEV-0289.

ELBRUS retired the DarkSide ransomware ecosystem in May 2021 and released its successor, BlackMatter, in July 2021. Replicating their patterns from DarkSide, ELBRUS deployed BlackMatter themselves and ran a RaaS program for affiliates. The activity group then retired the BlackMatter ransomware ecosystem in November 2021.

While they aren’t currently publicly observed to be running a RaaS program, ELBRUS is very active in compromising organizations via phishing campaigns that lead to their JSSLoader and Griffon malware. Since 2019, ELBRUS has partnered with DEV-0324 to distribute their malware implants. DEV-0324 acts as a distributor in the cybercriminal economy, providing a service to distribute the payloads of other attackers through phishing and exploit kit vectors. ELBRUS has also been abusing CVE-2021-31207 in Exchange to compromise organizations in April of 2022, an interesting pivot to using a less popular authenticated vulnerability in the ProxyShell cluster of vulnerabilities. This abuse has allowed them to target organizations that patched only the unauthenticated vulnerability in their Exchange Server and turn compromised low privileged user credentials into highly privileged access as SYSTEM on an Exchange Server.  

DEV-0504: Shifting payloads reflecting the rise and fall of RaaS programs

An excellent example of how clustering activity based on ransomware payload alone can lead to obfuscating the threat actors behind the attack is DEV-0504. DEV-0504 has deployed at least six RaaS payloads since 2020, with many of their attacks becoming high-profile incidents attributed to the “REvil gang” or “BlackCat ransomware group”. This attribution masks the actions of the set of the attackers in the DEV-0504 umbrella, including other REvil and BlackCat affiliates. This has resulted in a confusing story of the scale of the ransomware problem and overinflated the impact that a single RaaS program shutdown can have on the threat environment.  

Timeline showing DEV-0504's ransomware payloads over time.
Figure 3. Ransomware payloads distributed by DEV-0504 between 2020 and June 2022

DEV-0504 shifts payloads when a RaaS program shuts down, for example the deprecation of REvil and BlackMatter, or possibly when a program with a better profit margin appears. These market dynamics aren’t unique to DEV-0504 and are reflected in most RaaS affiliates. They can also manifest in even more extreme behavior where RaaS affiliates switch to older “fully owned” ransomware payloads like Phobos, which they can buy when a RaaS isn’t available, or they don’t want to pay the fees associated with RaaS programs.

DEV-0504 appears to rely on access brokers to enter a network, using Cobalt Strike Beacons they have possibly purchased access to. Once inside a network, they rely heavily on PsExec to move laterally and stage their payloads. Their techniques require them to have compromised elevated credentials, and they frequently disable antivirus products that aren’t protected with tamper protection.

DEV-0504 was responsible for deploying BlackCat ransomware in companies in the energy sector in January 2022. Around the same time, DEV-0504 also deployed BlackCat in attacks against companies in the fashion, tobacco, IT, and manufacturing industries, among others. BlackCat remains DEV-0504’s primary payload as of June 2022.

DEV-0237: Prolific collaborator

Like DEV-0504, DEV-0237 is a prolific RaaS affiliate that alternates between different payloads in their operations based on what is available. DEV-0237 heavily used Ryuk and Conti payloads from Trickbot LLC/DEV-0193, then Hive payloads more recently. Many publicly documented Ryuk and Conti incidents and tradecraft can be traced back to DEV-0237.

After the activity group switched to Hive as a payload, a large uptick in Hive incidents was observed. Their switch to the BlackCat RaaS in March 2022 is suspected to be due to public discourse around Hive decryption methodologies; that is, DEV-0237 may have switched to BlackCat because they didn’t want Hive’s decryptors to interrupt their business. Overlap in payloads has occurred as DEV-0237 experiments with new RaaS programs on lower-value targets. They have been observed to experiment with some payloads only to abandon them later.

Figure 4. Ransomware payloads distributed by DEV-0237 between 2020 and June 2022

Beyond RaaS payloads, DEV-0237 uses the cybercriminal gig economy to also gain initial access to networks. DEV-0237’s proliferation and success rate come in part from their willingness to leverage the network intrusion work and malware implants of other groups versus performing their own initial compromise and malware development.

Relationship diagram showing the relationship between DEV-0237 and DEV-0447, DEV-0387, and DEV-0193.
Figure 5. Examples of DEV-0237’s relationships with other cybercriminal activity groups

Like all RaaS operators, DEV-0237 relies on compromised, highly privileged account credentials and security weaknesses once inside a network. DEV-0237 often leverages Cobalt Strike Beacon dropped by the malware they have purchased, as well as tools like SharpHound to conduct reconnaissance. The group often utilizes BITSadmin /transfer to stage their payloads. An often-documented trademark of Ryuk and Conti deployments is naming the ransomware payload xxx.exe, a tradition that DEV-0237 continues to use no matter what RaaS they are deploying, as most recently observed with BlackCat. In late March of 2022, DEV-0237 was observed to be using a new version of Hive again.

In May 2022, DEV-0237 started to routinely deploy Nokoyawa, a payload that we observed the group previously experimenting with when they weren’t using Hive. While the group used other payloads such as BlackCat in the same timeframe, Nokoyawa became a more regular part of their toolkits. By June 2022, DEV-0237 was still primarily deploying Hive and sometimes Nokoyawa but was seen experimenting with other ransomware payloads, including Agenda and Mindware.

DEV-0237 is also one of several actors observed introducing other tools into their attacks to replace Cobalt Strike. Cobalt Strike’s ubiquity and visible impact has led to improved detections and heightened awareness in security organizations, leading to observed decreased use by actors. DEV-0237 now uses the SystemBC RAT and the penetration testing framework Sliver in their attacks, replacing Cobalt Strike.

DEV-0450 and DEV-0464: Distributing Qakbot for ransomware deployment

The evolution of prevalent trojans from being commodity malware to serving as footholds for ransomware is well documented via the impact of Emotet, Trickbot, and BazaLoader. Another widely distributed malware, Qakbot, also leads to handoffs to RaaS affiliates. Qakbot is delivered via email, often downloaded by malicious macros in an Office document. Qakbot’s initial actions include profiling the system and the network, and exfiltrating emails (.eml files) for later use as templates in its malware distribution campaigns.

Qakbot is prevalent across a wide range of networks, building upon successful infections to continue spreading and expanding. Microsoft tracks DEV-0450 and DEV-0464 as  Qakbot distributors that result in observed ransomware attacks. DEV-0450 distributes the “presidents”-themed Qakbot, using American presidents’ names in their malware campaigns. Meanwhile, DEV-0464 distributes the “TR” Qakbot and other malware such as SquirrelWaffle. DEV-0464 also rapidly adopted the Microsoft Support Diagnostic Tool (MSDT) vulnerability (CVE-2022-30190) in their campaigns. The abuse of malicious macros and MSDT can be blocked by preventing Office from creating child processes, which we detail in the hardening guidance below.

Historically, Qakbot infections typically lead to hands-on-keyboard activity and ransomware deployments by DEV-0216, DEV-0506, and DEV-0826. DEV-0506 previously deployed Conti but switched to deploying Black Basta around April 8, 2022. This group uses DEV-0365’s Cobalt Strike Beacon infrastructure instead of maintaining their own. In late September 2022, Microsoft observed DEV-0506 adding Brute Ratel as a tool to facilitate their hands-on-keyboard access as well as Cobalt Strike Beacons.

Another RaaS affiliate that acquired access from Qakbot infections was DEV-0216, which maintains their own Cobalt Strike Beacon infrastructure and has operated as an affiliate for Egregor, Maze, Lockbit, REvil, and Conti in numerous high-impact incidents. Microsoft no longer sees DEV-0216 ransomware incidents initiating from DEV-0464 and DEV-0450 infections, indicating they may no longer be acquiring access via Qakbot.

DEV-0206 and DEV-0243: An “evil” partnership

Malvertising, which refers to taking out a search engine ad to lead to a malware payload, has been used in many campaigns, but the access broker that Microsoft tracks as DEV-0206 uses this as their primary technique to gain access to and profile networks. Targets are lured by an ad purporting to be a browser update, or a software package, to download a ZIP file and double-click it. The ZIP package contains a JavaScript file (.js), which in most environments runs when double-clicked. Organizations that have changed the settings such that script files open with a text editor by default instead of a script handler are largely immune from this threat, even if a user double clicks the script.

Once successfully executed, the JavaScript framework, also referred to SocGholish, acts as a loader for other malware campaigns that use access purchased from DEV-0206, most commonly Cobalt Strike payloads. These payloads have, in numerous instances, led to custom Cobalt Strike loaders attributed to DEV-0243. DEV-0243 falls under activities tracked by the cyber intelligence industry as “EvilCorp,”  The custom Cobalt Strike loaders are similar to those seen in publicly documented Blister malware’s inner payloads. In DEV-0243’s initial partnerships with DEV-0206, the group deployed a custom ransomware payload known as WastedLocker, and then expanded to additional DEV-0243 ransomware payloads developed in-house, such as PhoenixLocker and Macaw.

Around November 2021, DEV-0243 started to deploy the LockBit 2.0 RaaS payload in their intrusions. The use of a RaaS payload by the “EvilCorp” activity group is likely an attempt by DEV-0243 to avoid attribution to their group, which could discourage payment due to their sanctioned status.

Attack chain diagram showing DEV-0206 gaining access to target organizations and deploying JavaScript implant. After which, DEV-0243 begins hands-on keyboard actions.
Figure 6. The handover from DEV-0206 to DEV-0243

On July 26, 2022, Microsoft researchers discovered the FakeUpdates malware being delivered via existing Raspberry Robin infections. Raspberry Robin is a USB-based worm first publicly discussed by Red Canary. The DEV-0206-associated FakeUpdates activity on affected systems has since led to follow-on actions resembling DEV-0243 pre-ransomware behavior.

DEV-0401: China-based lone wolf turned LockBit 2.0 affiliate

Differing from the other RaaS developers, affiliates, and access brokers profiled here, DEV-0401 appears to be an activity group involved in all stages of their attack lifecycle, from initial access to ransomware development. Despite this, they seem to take some inspiration from successful RaaS operations with the frequent rebranding of their ransomware payloads. Unique among human-operated ransomware threat actors tracked by Microsoft, DEV-0401 is confirmed to be a China-based activity group.

DEV-0401 differs from many of the attackers who rely on purchasing access to existing malware implants or exposed RDP to enter a network. Instead, the group heavily utilizes unpatched vulnerabilities to access networks, including vulnerabilities in Exchange, Manage Engine AdSelfService Plus, Confluence, and Log4j 2. Due to the nature of the vulnerabilities they preferred, DEV-0401 gains elevated credentials at the initial access stage of their attack.

Once inside a network, DEV-0401 relies on standard techniques such as using Cobalt Strike and WMI for lateral movement, but they have some unique preferences for implementing these behaviors. Their Cobalt Strike Beacons are frequently launched via DLL search order hijacking. While they use the common Impacket tool for WMI lateral movement, they use a customized version of the wmiexec.py module of the tool that creates renamed output files, most likely to evade static detections. Ransomware deployment is ultimately performed from a batch file in a share and Group Policy, usually written to the NETLOGON share on a Domain Controller, which requires the attackers to have obtained highly privileged credentials like Domain Administrator to perform this action.

Timeline diagram showing DEV-0401's ransomware payloads over time
Figure 7. Ransomware payloads distributed by DEV-0401 between 2021 and April 2022

Because DEV-0401 maintains and frequently rebrands their own ransomware payloads, they can appear as different groups in payload-driven reporting and evade detections and actions against them. Their payloads are sometimes rebuilt from existing for-purchase ransomware tools like Rook, which shares code similarity with the Babuk ransomware family. In February of 2022, DEV-0401 was observed deploying the Pandora ransomware family, primarily via unpatched VMware Horizon systems vulnerable to the Log4j 2 CVE-2021-44228 vulnerability.

Like many RaaS operators, DEV-0401 maintained a leak site to post exfiltrated data and motivate victims to pay, however their frequent rebranding caused these systems to sometimes be unready for their victims, with their leak site sometimes leading to default web server landing pages when victims attempt to pay.  In a notable shift—possibly related to victim payment issues—DEV-0401 started deploying LockBit 2.0 ransomware payloads in April 2022. Around June 6, 2022, it began replacing Cobalt Strike with the Sliver framework in their attacks.

DEV-0537: From extortion to destruction

An example of a threat actor who has moved to a pure extortion and destruction model without deploying ransomware payloads is an activity group that Microsoft tracks as DEV-0537, also known as LAPSUS$. Microsoft has detailed DEV-0537 actions taken in early 2022 in this blog. DEV-0537 started targeting organizations mainly in Latin America but expanded to global targeting, including government entities, technology, telecom, retailers, and healthcare. Unlike more opportunistic attackers, DEV-0537 targets specific companies with an intent. Their initial access techniques include exploiting unpatched vulnerabilities in internet-facing systems, searching public code repositories for credentials, and taking advantage of weak passwords. In addition, there is evidence that DEV-0537 leverages credentials stolen by the Redline password stealer, a piece of malware available for purchase in the cybercriminal economy. The group also buys credentials from underground forums which were gathered by other password-stealing malware.

Once initial access to a network is gained, DEV-0537 takes advantage of security misconfigurations to elevate privileges and move laterally to meet their objectives of data exfiltration and extortion. While DEV-0537 doesn’t possess any unique technical capabilities, the group is especially cloud-aware. They target cloud administrator accounts to set up forwarding rules for email exfiltration and tamper with administrative settings on cloud environments. As part of their goals to force payment of ransom, DEV-0537 attempts to delete all server infrastructure and data to cause business disruption. To further facilitate the achievement of their goals, they remove legitimate admins and delete cloud resources and server infrastructure, resulting in destructive attacks. 

DEV-0537 also takes advantage of cloud admin privileges to monitor email, chats, and VOIP communications to track incident response efforts to their intrusions. DEV-0537 has been observed on multiple occasions to join incident response calls, not just observing the response to inform their attack but unmuting to demand ransom and sharing their screens while they delete their victim’s data and resources.

Defending against ransomware: Moving beyond protection by detection

A durable security strategy against determined human adversaries must include the goal of mitigating classes of attacks and detecting them. Ransomware attacks generate multiple, disparate security product alerts, but they could easily get lost or not responded to in time. Alert fatigue is real, and SOCs can make their lives easier by looking at trends in their alerts or grouping alerts into incidents so they can see the bigger picture. SOCs can then mitigate alerts using hardening capabilities like attack surface reduction rules. Hardening against common threats can reduce alert volume and stop many attackers before they get access to networks. 

Attackers tweak their techniques and have tools to evade and disable security products. They are also well-versed in system administration and try to blend in as much as possible. However, while attacks have continued steadily and with increased impact, the attack techniques attackers use haven’t changed much over the years. Therefore, a renewed focus on prevention is needed to curb the tide.

Ransomware attackers are motivated by easy profits, so adding to their cost via security hardening is key in disrupting the cybercriminal economy.

Building credential hygiene

More than malware, attackers need credentials to succeed in their attacks. In almost all attacks where ransomware deployment was successful, the attackers had access to a domain admin-level account or local administrator passwords that were consistent throughout the environment. Deployment then can be done through Group Policy or tools like PsExec (or clones like PAExec, CSExec, and WinExeSvc). Without the credentials to provide administrative access in a network, spreading ransomware to multiple systems is a bigger challenge for attackers. Compromised credentials are so important to these attacks that when cybercriminals sell ill-gotten access to a network, in many instances, the price includes a guaranteed administrator account to start with.

Credential theft is a common attack pattern. Many administrators know tools like Mimikatz and LaZagne, and their capabilities to steal passwords from interactive logons in the LSASS process. Detections exist for these tools accessing the LSASS process in most security products. However, the risk of credential exposure isn’t just limited to a domain administrator logging in interactively to a workstation. Because attackers have accessed and explored many networks during their attacks, they have a deep knowledge of common network configurations and use it to their advantage. One common misconfiguration they exploit is running services and scheduled tasks as highly privileged service accounts.

Too often, a legacy configuration ensures that a mission-critical application works by giving the utmost permissions possible. Many organizations struggle to fix this issue even if they know about it, because they fear they might break applications. This configuration is especially dangerous as it leaves highly privileged credentials exposed in the LSA Secrets portion of the registry, which users with administrative access can access. In organizations where the local administrator rights haven’t been removed from end users, attackers can be one hop away from domain admin just from an initial attack like a banking trojan. Building credential hygiene is developing a logical segmentation of the network, based on privileges, that can be implemented alongside network segmentation to limit lateral movement.

Here are some steps organizations can take to build credential hygiene:

  • Aim to run services as Local System when administrative privileges are needed, as this allows applications to have high privileges locally but can’t be used to move laterally. Run services as Network Service when accessing other resources.
  • Use tools like LUA Buglight to determine the privileges that applications really need.
  • Look for events with EventID 4624 where the logon type is 2, 4, 5, or 10 and the account is highly privileged like a domain admin. This helps admins understand which credentials are vulnerable to theft via LSASS or LSA Secrets. Ideally, any highly privileged account like a Domain Admin shouldn’t be exposed on member servers or workstations.
  • Monitor for EventID 4625 (Logon Failed events) in Windows Event Forwarding when removing accounts from privileged groups. Adding them to the local administrator group on a limited set of machines to keep an application running still reduces the scope of an attack as against running them as Domain Admin.
  • Randomize Local Administrator passwords with a tool like Local Administrator Password Solution (LAPS) to prevent lateral movement using local accounts with shared passwords.
  • Use a cloud-based identity security solution that leverages on-premises Active Directory signals get visibility into identity configurations and to identify and detect threats or compromised identities

Auditing credential exposure

Auditing credential exposure is critical in preventing ransomware attacks and cybercrime in general. BloodHound is a tool that was originally designed to provide network defenders with insight into the number of administrators in their environment. It can also be a powerful tool in reducing privileges tied to administrative account and understanding your credential exposure. IT security teams and SOCs can work together with the authorized use of this tool to enable the reduction of exposed credentials. Any teams deploying BloodHound should monitor it carefully for malicious use. They can also use this detection guidance to watch for malicious use.

Microsoft has observed ransomware attackers also using BloodHound in attacks. When used maliciously, BloodHound allows attackers to see the path of least resistance from the systems they have access, to highly privileged accounts like domain admin accounts and global administrator accounts in Azure.

Prioritizing deployment of Active Directory updates

Security patches for Active Directory should be applied as soon as possible after they are released. Microsoft has witnessed ransomware attackers adopting authentication vulnerabilities within one hour of being made public and as soon as those vulnerabilities are included in tools like Mimikatz. Ransomware activity groups also rapidly adopt vulnerabilities related to authentication, such as ZeroLogon and PetitPotam, especially when they are included in toolkits like Mimikatz. When unpatched, these vulnerabilities could allow attackers to rapidly escalate from an entrance vector like email to Domain Admin level privileges.

Cloud hardening

As attackers move towards cloud resources, it’s important to secure cloud resources and identities as well as on-premises accounts. Here are ways organizations can harden cloud environments:

Cloud identity hardening

Multifactor authentication (MFA)

  • Enforce MFA on all accounts, remove users excluded from MFA, and strictly require MFA from all devices, in all locations, at all times.
  • Enable passwordless authentication methods (for example, Windows Hello, FIDO keys, or Microsoft Authenticator) for accounts that support passwordless. For accounts that still require passwords, use authenticator apps like Microsoft Authenticator for MFA. Refer to this article for the different authentication methods and features.
  • Identify and secure workload identities to secure accounts where traditional MFA enforcement does not apply.
  • Ensure that users are properly educated on not accepting unexpected two-factor authentication (2FA).
  • For MFA that uses authenticator apps, ensure that the app requires a code to be typed in where possible, as many intrusions where MFA was enabled (including those by DEV-0537) still succeeded due to users clicking “Yes” on the prompt on their phones even when they were not at their computers. Refer to this article for an example.
  • Disable legacy authentication.

Cloud admins

Addressing security blind spots

In almost every observed ransomware incident, at least one system involved in the attack had a misconfigured security product that allowed the attacker to disable protections or evade detection. In many instances, the initial access for access brokers is a legacy system that isn’t protected by  antivirus or EDR solutions. It’s important to understand that the lack security controls on these systems that have access to highly privileged credentials act as blind spots that allow attackers to perform the entire ransomware and exfiltration attack chain from a single system without being detected. In some instances, this is specifically advertised as a feature that access brokers sell.

Organizations should review and verify that security tools are running in their most secure configuration and perform regular network scans to ensure appropriate security products are monitoring and protecting all systems, including servers. If this isn’t possible, make sure that your legacy systems are either physically isolated through a firewall or logically isolated by ensuring they have no credential overlap with other systems.

For Microsoft 365 Defender customers, the following checklist eliminates security blind spots:

  • Turn on cloud-delivered protection in Microsoft Defender Antivirus to cover rapidly evolving attacker tools and techniques, block new and unknown malware variants, and enhance attack surface reduction rules and tamper protection.
  • Turn on tamper protection features to prevent attackers from stopping security services.
  • Run EDR in block mode so that Microsoft Defender for Endpoint can block malicious artifacts, even when a non-Microsoft antivirus doesn’t detect the threat or when Microsoft Defender Antivirus is running in passive mode. EDR in block mode also blocks indicators identified proactively by Microsoft Threat Intelligence teams.
  • Enable network protection to prevent applications or users from accessing malicious domains and other malicious content on the internet.
  • Enable investigation and remediation in full automated mode to allow Microsoft Defender for Endpoint to take immediate action on alerts to resolve breaches.
  • Use device discovery to increase visibility into the network by finding unmanaged devices and onboarding them to Microsoft Defender for Endpoint.
  • Protect user identities and credentials using Microsoft Defender for Identity, a cloud-based security solution that leverages on-premises Active Directory signals to monitor and analyze user behavior to identify suspicious user activities, configuration issues, and active attacks.

Reducing the attack surface

Microsoft 365 Defender customers can turn on attack surface reduction rules to prevent common attack techniques used in ransomware attacks. These rules, which can be configured by all Microsoft Defender Antivirus customers and not just those using the EDR solution, offer significant hardening against attacks. In observed attacks from several ransomware-associated activity groups, Microsoft customers who had the following rules enabled were able to mitigate the attack in the initial stages and prevented hands-on-keyboard activity:

In addition, Microsoft has changed the default behavior of Office applications to block macros in files from the internet, further reduce the attack surface for many human-operated ransomware attacks and other threats.

Hardening internet-facing assets and understanding your perimeter

Organizations must identify and secure perimeter systems that attackers might use to access the network. Public scanning interfaces, such as RiskIQ, can be used to augment data. Some systems that should be considered of interest to attackers and therefore need to be hardened include:

  • Secure Remote Desktop Protocol (RDP) or Windows Virtual Desktop endpoints with MFA to harden against password spray or brute force attacks.
  • Block Remote IT management tools such as Teamviewer, Splashtop, Remote Manipulator System, Anydesk, Atera Remote Management, and ngrok.io via network blocking such as perimeter firewall rules if not in use in your environment. If these systems are used in your environment, enforce security settings where possible to implement MFA.

Ransomware attackers and access brokers also use unpatched vulnerabilities, whether already disclosed or zero-day, especially in the initial access stage. Even older vulnerabilities were implicated in ransomware incidents in 2022 because some systems remained unpatched, partially patched, or because access brokers had established persistence on a previously compromised systems despite it later being patched.

Some observed vulnerabilities used in campaigns between 2020 and 2022 that defenders can check for and mitigate include:

Ransomware attackers also rapidly adopt new vulnerabilities. To further reduce organizational exposure, Microsoft Defender for Endpoint customers can use the threat and vulnerability management capability to discover, prioritize, and remediate vulnerabilities and misconfigurations.

Microsoft 365 Defender: Deep cross-domain visibility and unified investigation capabilities to defend against ransomware attacks

The multi-faceted threat of ransomware requires a comprehensive approach to security. The steps we outlined above defend against common attack patterns and will go a long way in preventing ransomware attacks. Microsoft 365 Defender is designed to make it easy for organizations to apply many of these security controls.

Microsoft 365 Defender’s industry-leading visibility and detection capabilities, demonstrated in the recent MITRE Engenuity ATT&CK® Evaluations, automatically stop most common threats and attacker techniques. To equip organizations with the tools to combat human-operated ransomware, which by nature takes a unique path for every organization, Microsoft 365 Defender provides rich investigation features that enable defenders to seamlessly inspect and remediate malicious behavior across domains.

Learn how you can stop attacks through automated, cross-domain security and built-in AI with Microsoft Defender 365.

In line with the recently announced expansion into a new service category called Microsoft Security Experts, we’re introducing the availability of Microsoft Defender Experts for Hunting for public preview. Defender Experts for Hunting is for customers who have a robust security operations center but want Microsoft to help them proactively hunt for threats across Microsoft Defender data, including endpoints, Office 365, cloud applications, and identity.

Join our research team at the Microsoft Security Summit digital event on May 12 to learn what developments Microsoft is seeing in the threat landscape, as well as how we can help your business mitigate these types of attacks. Ask your most pressing questions during the live chat Q&A. Register today.

The post Ransomware as a service: Understanding the cybercrime gig economy and how to protect yourself appeared first on Microsoft Security Blog.

]]>
Microsoft 365 Defender demonstrates industry-leading protection in the 2022 MITRE Engenuity ATT&CK® Evaluations http://approjects.co.za/?big=en-us/security/blog/2022/04/05/microsoft-365-defender-demonstrates-industry-leading-protection-in-the-2022-mitre-engenuity-attck-evaluations/ Wed, 06 Apr 2022 01:30:07 +0000 For the fourth consecutive year, Microsoft 365 Defender demonstrated industry-leading protection in MITRE Engenuity’s independent ATT&CK® Enterprise Evaluations. These results highlighted the importance of taking an XDR-based approach spanning endpoints, identities, email and cloud, and the importance of both prevention and protection.

The post Microsoft 365 Defender demonstrates industry-leading protection in the 2022 MITRE Engenuity ATT&CK® Evaluations appeared first on Microsoft Security Blog.

]]>
For the fourth consecutive year, Microsoft 365 Defender demonstrated its industry-leading protection in MITRE Engenuity’s independent ATT&CK® Enterprise Evaluations, showcasing the value of an integrated XDR-based defense that unifies device and identity protection with a Zero Trust approach:

  • Complete visibility and analytics to all stages of the attack chain
  • 100% protection, blocking all stages in early steps
  • Each attack generated a single comprehensive incident for the SOC
  • Differentiated XDR capabilities with integrated identity protection
  • Protection for Linux across all attack stages
  • Deep and integrated Windows device sensors
  • Leading with product truth and a customer-centric approach

Microsoft 365 Defender XDR solution displayed top-class coverage by successfully surfacing to the security operations center (SOC) a single comprehensive incident per each of the simulated attacks. This comprehensive view provided in each incident detailed suspicious device and identity activities coupled with unparalleled coverage of adversary techniques across the entire attack chain. Microsoft 365 Defender also demonstrated 100% protection by blocking both attacks in the early stages.

This is the third year in which Microsoft 365 Defender showcases the power of the combined XDR suite, demonstrating coverage across devices, identities, and cloud applications.

Demonstrated complete visibility and analytics across all stages of the attack chain

Microsoft 365 Defender demonstrated complete technique-level coverage across all the attack stages of Wizard Spider and Sandworm, leveraging our artificial intelligence-driven adaptive protection.

Diagram showing an overview of the Wizard Spider and Sandworm attack stages.
Figure 1. Microsoft 365 Defender providing full attack chain coverage

Defending against human-operated ransomware requires a defense in-depth approach that continuously evaluates device, user, network, and organization risk and then leverages these signals to alert on potential threats across the entire attack chain. Providing detection and visibility enables defenders to evict the attackers from the network during the pre-ransom phase. It also minimizes the impact of encryption or extortion through data exfiltration activities.

Technique-level detection coverage in real time without delays

Human-operated ransomware attacks evolve within minutes, and the time it takes for defenders to respond and prevent attackers from performing destructive actions—such as encrypting devices or exfiltrating information for extortion—is crucial. Organizations need real-time detections with no delays to ensure they can rapidly evict attackers before they have a chance to continue to move laterally through the infrastructure. Microsoft 365 Defender provided technique-level coverage at every attack stage in real time without any delayed detections.

Bar chart comparing Microsoft's technique-level coverage against other competitors. Microsoft provided 100% coverage.
Figure 2. Microsoft 365 Defender providing technique-level coverage in every attack stage

100% protection coverage, blocking all stages in early steps

Microsoft 365 Defender provided superior coverage and blocked 100% of the attack stages, offering excellent coverage across Windows and Linux platforms. Moreover, its next-generation protection capabilities proceeded without hindering productivity by blocking benign activities or a need for user consent.  

Bar chart comparing Microsoft's protection coverage against other competitors. Microsoft blocked 9 out of 9 stages with no false positives.
Figure 3. Microsoft 365 Defender blocking in all stages

In real-world scenarios, blocking ransomware activities early—that is, in the pre-ransom stage across all platforms and assets—is crucial in protecting customers and mitigating the downstream extortion and disruption attack impact.

Each attack generated a single comprehensive incident for the SOC

Unlike many other vendors surfacing multiple alerts and multiple incidents, Microsoft 365 Defender surfaced exactly one incident per attack, combining all events across device and identity into a single comprehensive view of each attack.

Microsoft 365 Defender’s unique incident correlation technology is tremendously valuable for SOC analysts in dealing with alert fatigue. It significantly improves the efficiency in responding to threats, saving time they might have otherwise spent in manual correlations or dealing with individual alerts. It also makes triage and investigation easier and faster with a view of the full attack graph.  

Screenshot of Microsoft 365 Defender detecting the Wizard Spider simulated attack as a single incident.
Figure 4. Scenario 1: A single incident representing the Wizard Spider simulated attack with the attack sprawl and impacted assets summarized
Screenshot of Microsoft 365 Defender displaying the incident graph of the Wizard Spider simulated attack.
Figure 5. Scenario 1: Incident graph for an at-a-glance view of the entire attack, showing device and identity assets as well as all observed evidence
Screenshot of Microsoft 365 Defender detecting the Sandworm simulated attack as a single incident.
Figure 6. Scenario 2: A single incident representing the Sandworm simulated attack, with the attack sprawl and impacted assets summarized.

Unique and durable detections from the integrated Microsoft Defender for Identity

Microsoft 365 Defender’s integrated identity protection capabilities uncover and durably block identity-related attacks regardless of the specific attacker technique implemented on a device, making it practically impossible for attackers to evade. Furthermore, building these protections in the identity fabric provides in-depth, context-rich signals for security teams to investigate and respond effectively. Other vendors leveraging endpoint-only signals may be more susceptible to evasion, and their detections typically have less context.

Here are some examples representing Microsoft 365 Defender’s unique identity protection capabilities in the evaluation:

  • Step 5.A.4 – query to a security account manager (SAM) database was uncovered using Active Directory signals with detailed context on user enumeration activity. This identity-based detection approach prevents attacker evasion and provides rich investigation context for security teams. Some other vendors in the test relied on process creation telemetry to get similar visibility but lacked context and could be easily bypassed.
Screenshot of Microsoft 365 Defender detecting a suspicious remote SAM database query.
Figure 7. SAM database queried to enumerate users detected by the Microsoft 365 Defender Identity workload
  • Step 6.A.2 – resource-access activity on a domain controller was also uncovered using our identity sensors, with details of the exposed service principal name (SPN) and the compromised related resource name. Here too, this approach provides similar detection durability and investigation details advantages.
Screenshot of Microsoft 365 Defender detecting a suspicious resource access activity.
Figure 8. Timeline view of resource activity on a domain controller and SPN exposure attack with related compromised resource

Protection for Linux across all attack stages

Microsoft 365 Defender continues to demonstrate excellent protection coverage on all platforms, with top-level coverage on Windows and Linux. It covered all Linux-related stages via technique-level analytics, context-rich alerts, and in-depth investigation signals.

Customers face threats from various entry points across devices, and device discovery and lateral movement to identify high-value assets are table stakes for advanced attacks like human-operated ransomware. Therefore, having excellent coverage across all platforms is crucial to protect organizations against attacks.

Bar chart comparing Microsoft's technique-level coverage in Linux against other competitors. Microsoft provided 100% coverage.
Figure 9. Microsoft 365 Defender providing technique-level coverage in every Linux attack stage

For example, as seen in Figure 10 below, Microsoft Defender for Endpoint on a Linux device alerted of suspicious behavior by a web server process. The alert allowed for blocking sensitive file read and preventing further file read. The attacker then attempted to download and run a backdoor on the device. However, that was also blocked behaviorally, thus preventing subsequent compromise.

Screenshot of Microsoft 365 Defender for Endpoint blocking a suspicious behavior by a web server process.
Figure 10. Sensitive file read by a web server process detected on Linux device

Unique and durable detections from Windows deep native sensors  

While most attack steps on devices could be observed by inspecting process and script activities, solely relying on this type of telemetry can be challenging in several aspects.

From a detection durability standpoint, attackers could easily avoid detection by obfuscating or pivoting to alternative methods. Furthermore, in terms of detection quality, relying solely on “surface-level” telemetry could potentially produce a higher number of false positives and overhead for security teams. Finally, this type of telemetry lacks the needed context to enable effective investigation and response.

Unlike other solutions, Microsoft 365 Defender’s unique platform-native deep device sensors introduced signal depth, providing durable, context-rich signals for security teams to identify, investigate and respond to. Here are some examples, as seen during the evaluation:

  • Steps 1.A.6 and 19.A.11 were uncovered via enhanced Windows Management Instrumentation (WMI) sensors, providing visibility to evasive attacker activities without relying on a process or script execution telemetry.
Screenshot of Microsoft 365 Defender detecting process creation via WMI.
Figure 11. Process creation via WMI detected natively using WMI sensors, regardless of invocation method
Screenshot of Microsoft 365 Defender detecting system shutdown via WMI.
Figure 12. System shutdown via WMI detected natively using WMI sensors, regardless of invocation method
  • Step 3.A.4 was uncovered via COM sensors, providing visibility to the Microsoft Outlook COM interface and detecting an attacker’s search for unsecured passwords in Outlook without relying on process command lines that attackers can easily evade by using COM interfaces directly.
Screenshot of Microsoft 365 Defender detecting a suspicious Outlook COM call.
 Figure 13. Detection of attacker’s search for passwords in Outlook using our unique COM interface sensor integration
  • Step 17.A.2 was uncovered via Data Protection API (DPAPI) sensors, providing visibility to credential access—an extremely important activity. Other solutions monitor web browser folders for file access which is extremely prone to false positives in real-world environments.
Screenshot of Microsoft 365 Defender Advanced Hunting page.
 Figure 14. Credential access visibility via DPAPI sensor integration

A final word: Leading with product truth and a customer-centric approach

As in previous years, Microsoft’s philosophy in this evaluation was to empathize with our customers—the “protection that works for customers in the real world” approach. We participated in the evaluation with product capabilities and configurations that we expect customers to use.

As you review evaluation results, you should consider additional important aspects, including depth and durability of protection, completeness of signals and actionable insights, and quality aspects such as device performance impact and false-positive rates. All of these are critical to the solution’s reliable operation and translate directly to protection that works in real customer production environments.

We thank MITRE Engenuity for the opportunity to contribute to and participate in this year’s evaluation.

The post Microsoft 365 Defender demonstrates industry-leading protection in the 2022 MITRE Engenuity ATT&CK® Evaluations appeared first on Microsoft Security Blog.

]]>