Understanding augmented analytics
Traditionally, the intricacies of data analytics belonged to data professionals. They had the know-how, expertise, and software required to execute key processes in the data analytics lifecycle, which includes data exploration and preparation, model design and development, and insights generation and dissemination. Often manual and tedious, the work could take days, weeks, or longer. Business teams waited on the sidelines for information to guide their decisions and actions.
However, given the speed with which companies must now operate in highly competitive digital environments, decision makers simply can’t wait. They need deeper insights—and more of them—quicker than ever. Yet most data science teams can’t scale their operations fast enough to keep up with demands for data analyses, a challenge compounded by big data and other large, complex data stores.
By using artificial intelligence (AI) and related technologies, augmented analytics helps transform how companies generate, consume, and share business intelligence (BI) and business analytics (BA).
Three key components comprise augmented analytics:
- Machine learning (ML). A type of AI, ML uses algorithms to rapidly search historical data, identify patterns, spot deviations, and generate insights and recommendations. ML models thrive on big data and continuously learn from new structured and unstructured data—without human intervention. ML models underlie most augmented analytics capabilities.
- Natural language technologies. Humans and computers can more easily talk with one another through natural language processing (NLP), which interprets human language for computers, and natural language generation (NLG), which translates computer code into human language. As a result, businesspeople can engage with machines in back-and-forth, question-and-answer sessions using familiar domain and industry terms.
- Automation. ML-driven technologies automate routine manual tasks across the data analytics lifecycle. This significantly reduces the time needed to build, train, and deploy ML models. For example, aided by automatically generated prompts, technical and nontechnical individuals more quickly discover and prepare raw data. Near the end of the lifecycle, text-based reports—automatically created and distributed with user-specified frequency—speed insight sharing.
True to its name, augmented analytics doesn’t replace but rather augments human intelligence, intuition, and curiosity. Taking contextual and behavioral cues gathered over time from users, ML models assess human intent and preferences and offer appropriate insights, guidance, and recommendations through natural language. They leave the actual decision making to people.
Follow Power Platform