Recommending friends and locations based on individual location history
- Yu Zheng ,
- Lizhu Zhang ,
- Zhengxin Ma ,
- Xing Xie ,
- Wei-Ying Ma
ACM Transactions on the Web |
The increasing availability of location-acquisition technologies (GPS, GSM networks, etc.) enables people to log the location histories with spatio-temporal data. Such real-world location histories imply to some extent users’ interests in places, and bring us opportunities to understand the correlation between users and locations. In this article, we move towards this direction, and report on a personalized friend & location recommender for the geographical information systems (GIS) on the Web. First, in this recommender system a particular individual’s visits to a geospatial region in the real world are used as their implicit ratings on that region. Second, we measure the similarity between users in terms of their location histories, and recommend each user a group of potential friends in a GIS community. Third, we estimate an individual’s interests in a set of unvisited regions by involving his/her location history and those of other users. Some unvisited locations that might match their tastes can be recommended to the individual. A framework, referred to as a hierarchical-graph-based similarity measurement (HGSM), is proposed to uniformly model each individual’s location history, and effectively measure the similarity among users. In this framework, we take into account three factors: 1) the sequence property of people’s outdoor movements, 2) the visited popularity of a geospatial region and 3) the hierarchical property of geographic spaces. Further, we incorporated a content-based method into a user-based collaborative filtering algorithm, which uses HGSM as the user similarity measure, to estimate the rating of a user on an item. We evaluated this recommender system based on the GPS data collected by 75 subjects over a period of 1 year in the real world. As a result, HGSM outperforms related similarity measures, comprising of similarity-by-count, the cosine similarity and Pearson similarity measures. Moreover, beyond the item-based CF method and random recommendations, our system provides users with more attractive locations and better user experiences of recommendation.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library --http://www.acm.org/dl/.
Publication Downloads
GeoLife GPS Trajectories
August 9, 2012
This is a GPS trajectory dataset collected in (Microsoft Research Asia) GeoLife project by 182 users in a period of over three years (from April 2007 to August 2012). A GPS trajectory of this dataset is represented by a sequence of time-stamped points, each of which contains the information of latitude, longitude and altitude. This dataset contains 17,621 trajectories with a total distance of about 1.2 million kilometers and a total duration of 48,000+ hours. These trajectories were recorded by different GPS loggers and GPS-phones, and have a variety of sampling rates. 91 percent of the trajectories are logged in a dense representation, e.g. every 1~5 seconds or every 5~10 meters per point. This dataset recoded a broad range of users' outdoor movements, including not only life routines like go home and go to work but also some entertainments and sports activities, such as shopping, sightseeing, dining, hiking, and cycling. This trajectory dataset can be used in many research fields, such as mobility pattern mining, user activity recognition, location-based social networks, location privacy, and location recommendation.