Pinwheel graphic representing the Microsoft Research Summit
Return to Event: Microsoft Research Summit 2021

Microsoft Research Summit 2021 • Videos

Research talk: Enhancing the robustness of massive language models via invariant risk minimization

Despite the dramatic recent progress in natural language processing (NLP) afforded by large pretrained language models, important limitations remain. A growing body of work demonstrates that such models are easily fooled by adversarial attacks and have poor out-of-distribution generalization, as they tend to learn spurious, non-causal correlations. This talk explores how to reduce the impact of spurious correlations in large language models based on the so-called invariance principle, which states that only relationships invariant across training environments should be learned. It includes data showing that language models trained via invariant risk minimization (IRM), rather than the traditional expected risk minimization, achieve better out-of-distribution generalization.

Learn more about the 2021 Microsoft Research Summit: https://Aka.ms/researchsummit (opens in new tab)

Track:
Causal Machine Learning
Date:
Speakers:
Robert West
Affiliation:
EPFL

Causal Machine Learning