Tuesday, December 4, 2018
Adversarial Multiple Source Domain Adaptation
10:45 AM-12:45 PM | Room 210&230 AB #107
Han Zhao, Shanghang Zhang, Guanhang Wu, Jose M. F. Moura, Joao P. Costeira, Geoffrey Gordon
FRAGE: Frequency-Agnostic Word Representation
10:45 AM-12:45 PM | Room 210&230 AB #153
Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang, Tie-Yan Liu
Frequency-Domain Dynamic Pruning for Convolutional Neural Networks
10:45 AM-12:45 PM | Room 210&230 AB #67
Zhenhua Liu, Jizheng Xu, Xiulian Peng, Ruiqin Xiong
Heterogeneous Bitwidth Binarization in Convolutional Neural Networks
10:45 AM-12:45 PM | Room 210&230 AB #69
Josh Fromm, Shwetak Patel, Matthai Philipose
Multiple Instance Learning for Efficient Sequential Data Classification on Resource-constrained Devices
10:45 AM-12:45 PM | Room 210&230 AB #72
Don Dennis, Chirag Pabbaraju, Harsha Vardhan Simhadri, Prateek Jain
Navigating with Graph Representations for Fast and Scalable Decoding of Neural Language Models
10:45 AM-12:45 PM | Room 210&230 AB #73
Minjia Zhang, Xiaodong Liu, Wenhan Wang, Jianfeng Gao, Yuxiong He
On the Dimensionality of Word Embedding
10:45 AM-12:45 PM | Room 210&230 AB #110
Zi Yin, Yuanyuan Shen
The Lingering of Gradients: How to Reuse Gradients Over Time
10:45 AM-12:45 PM | Room 210&230 AB #2
Towards Text Generation with Adversarially Learned Neural Outlines
10:45 AM-12:45 PM | Room 210&230 AB #14
Sandeep Subramanian, Sai Rajeswar Mudumba, Adam Trischler, Alessandro Sordoni, Aaron Courville, Chris Pal
A Dual Framework for Low-rank Tensor Completion
5:00 PM-7:00 PM | Room 210&230 AB #146
Madhav Nimishakavi, Bamdev Mishra, Pratik Kumar Jawanpuria
Bounded-Loss Private Prediction Markets
5:00 PM-7:00 PM | Room 210&230 AB #28
Rafael Frongillo, Bo Waggoner
Contamination Attacks in Multi-Party Machine Learning
5:00 PM-7:00 PM | Room 210&230 AB #158
Jamie Hayes, Olya Ohrimenko
Dialog-based Interactive Image Retrieval
5:00 PM-7:00 PM | Room 210&230 AB #55
Xiaoxiao Guo, Hui Wu, Yu Cheng, Steven Rennie, Rogerio Schmidt Feris
Dialog-to-Action: Conversational Question Answering Over a Large-Scale Knowledge Base
5:00 PM-7:00 PM | Room 210&230 AB #93
Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, Jian Yin
Generating Informative and Diverse Conversational Responses via Adversarial Information Maximization
5:00 PM-7:00 PM | Room 210&230 AB #94
Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan, Xiujun Li, Chris Brockett, Bill Dolan
Layer-Wise Coordination between Encoder and Decoder for Neural Machine Translation
5:00 PM-7:00 PM | Room 210&230 AB #85
Tianyu He, Tao Qin, Tie-Yan Liu, Yingce Xia, Xu Tan, Di He, Zhibo Chen
Local Differential Privacy for Evolving Data
5:00 PM-7:00 PM | Room 210&230 AB #153
Matthew Joseph, Aaron Roth, Jonathan Ullman, Bo Waggoner
Precision and Recall for Time Series
5:00 PM-7:00 PM | Room 210&230 AB #116
Nesime Tatbul, Tae Jun Lee, Stan Zdonik, Mejbah Alam, Justin Gottschlich
Supervising Unsupervised Learning
5:00 PM-7:00 PM | Room 210&230 AB #164
Vikas Garg, Adam Kalai
Turbo Learning for Captionbot and Drawingbot
5:00 PM-7:00 PM | Room 210&230 AB #54
Qiuyuan Huang, Pengchuan Zhang, Oliver Wu, Lei Zhang
Wednesday, December 5, 2018
Adversarial Text Generation via Feature-Mover’s Distance
10:45 AM-12:45 PM | Room 210&230 AB #129
Liqun Chen, Shuyang Dai, Chenyang Tao, Dinghan Shen, Zhe Gan, Haichao Zhang, Yizhe Zhang, Lawrence Carin
A Smoothed Analysis of the Greedy Algorithm for the Linear Contextual Bandit Problem
10:45 AM-12:45 PM | Room 210&230 AB #159
Sampath Kannan, Jamie Morgenstern, Aaron Roth, Bo Waggoner, Zhiwei Steven Wu
Constructing Unrestricted Adversarial Examples with Generative Models
10:45 AM-12:45 PM | Room 210&230 AB #149
Yang Song, Rui Shu, Nate Kushman, Stefano Ermon
Global Non-convex Optimization with Discretized Diffusions
10:45 AM-12:45 PM | Room 210&230 AB #18
Murat A. Erdogdu, Lester Mackey, Ohad Shamir
Inexact trust-region algorithms on Riemannian manifolds
10:45 AM-12:45 PM | Room 210&230 AB #15
Hiroyuki Kasai, Bamdev Mishra
Is Q-Learning Provably Efficient?
10:45 AM-12:45 PM | Room 210&230 AB #165
Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, Michael Jordon
M-Walk: Learning to Walk over Graphs with Monte Carlo Tree Search
10:45 AM-12:45 PM | Room 210&230 | AB #164
Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, Jianfeng Gao
On Oracle-Efficient PAC RL with Rich Observations
10:45 AM-12:45 PM | Room 210&230 AB #111
Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, Robert Schapire
On the Local Hessian in Back-propagation
10:45 AM-12:45 PM | Room 210&230 AB #43
Huishuai Zhang, Wei Chen, Tie-Yan Liu
Recurrent Transformer Networks for Semantic Correspondence
10:45 AM-12:45 PM | Room 210&230 AB #119
Seungryong Kim, Stephen Lin, SANG RYUL JEON, Dongbo Min, Kwanghoon Sohn
Universal Growth in Production Economies
10:45 AM-12:45 PM | Room 210&230 AB #72
Simina Branzei, Ruta Mehta, Noam Nisan
Weakly Supervised Dense Event Captioning in Videos
10:45 AM-12:45 PM | Room 210&230 AB #125
Xuguang Duan, Wenbing Huang, Chuang Gan, Jingdong Wang, Wenwu Zhu, Junzhou Huang
Natasha 2: Faster Non-Convex Optimization Than SGD
5:00 PM-7:00 PM | Room 210&230 AB #50
Coupled Variational Bayes via Optimization Embedding
5:00 PM-7:00 PM | Room 210&230 AB #11
Bo Dai, Hanjun Dai, Niao He, Weiyang Liu, Zhen Liu, Jianshu Chen, Lin Xiao, Le Song
Dual Policy Iteration
5:00 PM-7:00 PM | Room 210&230 AB #124
Wen Sun, Geoffrey Gordon, Wen Sun, J. Andrew Bagnell
Probabilistic Matrix Factorization for Automated Machine Learning
5:00 PM-7:00 PM | Room 210&230 AB #15
Nicolo Fusi, Rishit Sheth, Melih Elibol
NEON2: Finding Local Minima via First-Order Oracles
5:00 PM-7:00 PM | Room 210&230 AB #45
Zeyuan Allen-Zhu, Yuanzhi Li
Teaching Inverse Reinforcement Learners via Features and Demonstrations
5:00 PM-7:00 PM | Room 210&230 AB #167
Luis Haug, Sebastian Tschiatschek, Adish Singla
Thursday, December 6, 2018
Contextual bandits with surrogate losses: Margin bounds and efficient algorithms
10:45 AM-12:45 PM | Room 210&230 AB #165
Dylan Foster, Akshay Krishnamurthy
FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural Network
10:45 AM – 12:45 PM | Room 210&230 AB #89
Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Kumar, Prateek Jain, Manik Varma
Gaussian Process Prior Variational Autoencoders
10:45 AM-12:45 PM | Room 210&230 AB #63
Nicolo Fusi, Luca Saglietti, Francesco Paolo Casale, Adrian Dalca, Jennifer Listgarten
Learning to Teach with Dynamic Loss Functions
10:45 AM-12:45 PM | Room 210&230 AB #155
Tao Qin, Tie-Yan Liu, Fei Tian, Yingce Xia, Lijun Wu, Yingce Xia, Lai Jian-Huang
Byzantine Stochastic Gradient Descent
10:45 AM-12:45 PM | Room 210&230 AB #164
Dan Alistarh, Zeyuan Allen-Zhu, Jerry Li
Towards Deep Conversational Recommendations
10:45 AM-12:45 PM | Room 210&230 AB #118
Raymond Li, Samira Ebrahimi Kahou, Hannes Schulz,Vincent Michalski, Laurent Charlin, Chris Pal
Optimal Algorithms for Non-Smooth Distributed Optimization in Networks
5:00 PM-7:00 PM | Room 210&230 AB #15
Kevin Scaman, Francis Bach, Sebastien Bubeck, Yin Tat Lee, Laurent Massoulie
Support Recovery for Orthogonal Matching Pursuit: Upper and Lower bounds
5:00 PM-7:00 PM | Room 210&230 AB #63
Raghav Somani, Chirag Gupta, Prateek Jain, Praneeth Netrapalli
Community Exploration: From Offline Optimization to Online Learning
5:00 PM-7:00 PM | Room 210&230 AB #153
Xiaowei Chen, Weiran Huang, Wei Chen, John C.S. Lui
Constrained Graph Variational Autoencoders for Molecule Design
5:00 PM-7:00 PM | Room 210&230 AB #103
Qi Liu, Miltos Allamanis, Marc Brockschmidt, Alexander Gaunt
How To Make the Gradients Small Stochastically
5:00 PM-7:00 PM | Room 210&230 AB #74
Learning Beam Search Policies via Imitation Learning
5:00 PM-7:00 PM | Room 210&230 AB#104
Renato Negrinho, Matthew Gormley, Geoffrey Gordon
Learning SMaLL Predictors
5:00 PM-7:00 PM | Room 210&230 AB #98
Vikas K. Garg, Ofer Dekel, Lin Xiao
Neural Architecture Optimization
5:00 PM-7:00 PM | Room 210&230 AB #123
Renqian Luo, Fei Tian, Tao Qin, Enhon Chen, Tie-Yan Liu
Random Feature Stein Discrepancies
5:00 PM-7:00 PM | Room 210&230 AB #78
Jonathan Huggins, Lester Mackey