Classification-enhanced Ranking
- Paul Bennett ,
- Krysta M. Svore ,
- Susan Dumais ,
- Krysta M. Svore
Proceedings of World Wide Web |
Published by Association for Computing Machinery, Inc.
Many have speculated that classifying web pages can improve a search engine’s ranking of results. Intuitively results should be more relevant when they match the class of a query. We present a simple framework for classification-enhanced ranking that uses clicks in combination with the classification of web pages to derive a class distribution for the query. We then go on to define a variety of features that capture the match between the class distributions of a web page and a query, the ambiguity of a query, and the coverage of a retrieved result relative to a query’s set of classes. Experimental results demonstrate that a ranker learned with these features significantly improves ranking over a competitive baseline. Furthermore, our methodology is agnostic with respect to the classification space and can be used to derive query classes for a variety of different taxonomies.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library --http://www.acm.org/dl/.