Continual Learning about Objects in the Wild: An Interactive Approach
International Conference on Multimodal Interaction |
Published by ACM
We introduce a mixed-reality, interactive approach for continually learning to recognize an open-ended set of objects in a user’s surrounding environment. The proposed approach leverages the multimodal sensing, interaction, and rendering affordances of a mixed-reality headset, and enables users to label nearby objects via speech, gaze, and gestures. Image views of each labeled object are automatically captured from varying viewpoints over time, as the user goes about their everyday tasks. The labels provided by the user can be propagated forward and backwards in time and paired with the collected views to update an object recognition model, in order to continually adapt it to the user’s specific objects and environment. We review key challenges for the proposed interactive continual learning approach, present details of an end-to-end system implementation, and report on results and lessons learned from an initial, exploratory case study using the system.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org. ICMI ’22, November 7–11, 2022, Bengaluru, India © 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM. ACM ISBN 978-1-4503-9390-4/22/11. . . $15.00 https://doi.org/10.1145/3536221.3556567