Enforcing Object Protocols by Combining Static and Dynamic Analysis
- Madhu Gopinathan ,
- Sriram Rajamani
ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages and Applications (OOPSLA) |
Published by Association for Computing Machinery, Inc.
In this paper, we consider object protocols that constrain interactions between objects in a program. Several such protocols have been proposed in the literature [3, 9, 6, 5]. For many APIs (such as JDOM [23], JDBC [22]), API designers constrain how API clients interact with API objects. In practice, API clients violate such constraints, as evidenced by postings in discussion forums for these APIs. Thus, it is important that API designers specify constraints using appropriate object protocols and enforce them. The goal of an object protocol is expressed as a protocol in variant. Fundamental properties such as ownership can be expressed as protocol invariants. We present a language, PROLANG, to specify object protocols along with their protocol invariants, and a tool, INVCOP++, to check if a program satisfies a protocol invariant. INVCOP++ separates the problem of checking if a protocol satisfies its protocol invariant (called protocol correctness), from the problem of checking if a program conforms to a protocol (called program conformance). The former is solved using static analysis, and the latter using runtime analysis. Due to this separation (1) errors made in protocol design are detected at a higher level of abstraction, independent of the program’s source code, and (2) performance of conformance checking is improved as protocol correctness has been verified statically. We present theoretical guarantees about the way we combine static and runtime analysis, and empirical evidence that our tool INVCOP++ finds usage errors in widely used APIs. We also show that statically checking protocol correctness greatly optimizes the overhead of checking program conformance, thus enabling API clients to test whether their programs use the API as intended by the API designer.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library --http://www.acm.org/dl/.