Event Detection with Burst Information Networks
- Tao Ge ,
- Lei Cui ,
- Baobao Chang ,
- Zhifang Sui ,
- Ming Zhou
COLING 2016 |
Retrospective event detection is an important task for discovering previously unidentified events in a text stream. In this paper, we propose two fast centroid-aware event detection models based on a novel text stream representation – Burst Information Networks (BINets) for addressing the challenge, following the D2N2K (Data-to-Network-to-Knowledge) paradigm. The BINets are time-aware, efficient and can be easily analyzed for identifying key information (centroids). These advantages allow the BINet-based approaches to achieve the state-of-the-art performance on multiple datasets, demonstrating the efficacy of BINets for the task of event detection.