Freetures: Localization in Signed Distance Function Maps

arXiv

PDF | Publication

Localization of a robotic system within a previously mapped environment is important for reducing estimation drift and for reusing previously built maps. Existing techniques for geometry-based localization have focused on the description of local surface geometry, usually using pointclouds as the underlying representation. We propose a system for geometry-based localization that extracts features directly from an implicit surface representation: the Signed Distance Function (SDF). The SDF varies continuously through space, which allows the proposed system to extract and utilize features describing both surfaces and free-space. Through evaluations on public datasets, we demonstrate the flexibility of this approach, and show an increase in localization performance over state-of-the-art handcrafted surfaces-only descriptors. We achieve an average improvement of ~12% on an RGB-D dataset and ~18% on a LiDAR-based dataset. Finally, we demonstrate our system for localizing a LiDAR-equipped MAV within a previously built map of a search and rescue training ground.

Freetures: Localization in Signed Distance Function Maps | JRC Workshop 2021

Computer Vision | Day 1 20 April 2021 Speaker: Alexander Millane, ETH Zurich (collaboration with Jeff Delmerico, Juan Nieto, Marc Pollefeys, Microsoft) This virtual event brought together the PhD students and postdocs working on collaborative research engagements with Microsoft via the Swiss Joint Research Center, Mixed Reality & AI Zurich Lab, Mixed Reality & AI Cambridge Lab, Inria Joint Center, their academic and Microsoft supervisors as well as the wider research community. The event continued in the tradition of the annual Swiss JRC Workshops. PhD students and postdocs presented project updates and discussed their research with their supervisors and other attendants. In addition, Microsoft speakers provided updates on relevant Microsoft projects and initiatives. There were four event sessions according to research themes: Computer Vision, Systems,…