GAMPS: Compressing Multi Sensor Data by Grouping and Amplitude Scaling
- Sorabh Gandhi ,
- Suman Nath ,
- Subhash Suri ,
- Jie Liu
ACM SIGMOD |
Published by Association for Computing Machinery, Inc.
We consider the problem of collectively approximating a set of sensor signals using the least amount of space so that any individual signal can be efficiently reconstructed within a given maximum (L∞) error ε. The problem arises naturally in applications that need to collect large amounts of data from multiple concurrent sources, such as sensors, servers and network routers, and archive them over a long period of time for offline data mining. We present GAMPS, a general framework that addresses this problem by combining several novel techniques. First, it dynamically groups multiple signals together so that signals within each group are correlated and can be maximally compressed jointly. Second, it appropriately scales the amplitudes of different signals within a group and compresses them within the maximum allowed reconstruction error bound. Our schemes are polynomial time O(α,β) approximation schemes, meaning that the maximum (L∞) error is at most αε and it uses at most β times the optimal memory. Finally, GAMPS maintains an index so that various queries can be issued directly on compressed data. Our experiments on several real-world sensor datasets show that GAMPS significantly reduces space without compromising the quality of search and query.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library --http://www.acm.org/dl/.