Holmes: Effective Statistical Debugging via Efficient Path Profiling
- Trishul Chilimbi ,
- Ben Liblit ,
- Krishna Mehra ,
- Aditya Nori ,
- Kapil Vaswani
Proceedings of the International Conference on Software Engineering (ICSE) |
Published by Association for Computing Machinery, Inc.
Statistical debugging aims to automate the process of isolating bugs by profiling several runs of the program and using statistical analysis to pinpoint the likely causes of failure. In this paper, we investigate the impact of using richer program profiles such as path profiles on the effectiveness of bug isolation. We describe a statistical debugging tool called Holmes that isolates bugs by finding paths that correlate with failure. We also present an adaptive version of Holmes that uses iterative, bug-directed profiling to lower execution time and space overheads. We evaluate Holmes using programs from the SIR benchmark suite and some large real world applications. Our results indicate that path profiles can help isolate bugs more precisely by providing more information about the context in which bugs occur. Moreover, bug-directed profiling can efficiently isolate bugs with low overheads, providing a scalable and accurate alternative to sparse random sampling.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library --http://www.acm.org/dl/.