Linear Discriminant Model for Information Retrieval
- Jianfeng Gao ,
- Haoliang Qi ,
- Xinsong Xia ,
- Jian-Yun Nie
Published by Association for Computing Machinery, Inc.
This paper presents a new discriminative model for information retrieval (IR), referred to as linear discriminant model (LDM), which provides a flexible framework to incorporate arbitrary features. LDM is different from most existing models in that it takes into account a variety of linguistic features that are derived from the component models of HMM that is widely used in language modeling approaches to IR. Therefore, LDM is a means of melding discriminative and generative models for IR. We present two algorithms of parameter learning for LDM. One is to optimize the average precision (AP) directly using an iterative procedure. The other is a perceptron-based algorithm that minimizes the number of discordant document-pairs in a rank list. The effectiveness of our approach has been evaluated on the task of ad hoc retrieval using six English and Chinese TREC test sets. Results show that (1) in most test sets, LDM significantly outperforms the state-of-the-art language modeling approaches and the classical probabilistic retrieval model; (2) it is more appropriate to train LDM using a measure of AP rather than likelihood if the IR system is graded on AP; and (3) linguistic features (e.g. phrases and dependences) are effective for IR if they are incorporated properly.
Copyright © 2004 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library -http://www.acm.org/dl/.