Modeling Relational Data with Graph Convolutional Networks

  • Michael Sejr Schlichtkrull ,
  • Thomas N. Kipf ,
  • Peter Bloem ,
  • ,
  • Ivan Titov ,
  • Max Welling

2018 European Semantic Web Conference |

Published by Springer, Cham

PDF

Knowledge graphs enable a wide variety of applications, including question answering and information retrieval. Despite the great effort invested in their creation and maintenance, even the largest (e.g., Yago, DBPedia or Wikidata) remain incomplete. We introduce Relational Graph Convolutional Networks (R-GCNs) and apply them to two standard knowledge base completion tasks: Link prediction (recovery of missing facts, i.e. subject-predicate-object triples) and entity classification (recovery of missing entity attributes). R-GCNs are related to a recent class of neural networks operating on graphs, and are developed specifically to handle the highly multi-relational data characteristic of realistic knowledge bases. We demonstrate the effectiveness of R-GCNs as a stand-alone model for entity classification. We further show that factorization models for link prediction such as DistMult can be significantly improved through the use of an R-GCN encoder model to accumulate evidence over multiple inference steps in the graph, demonstrating a large improvement of 29.8% on FB15k-237 over a decoder-only baseline.