Multi-Label Semantic 3D Reconstruction Using Voxel Blocks

2016 Fourth International Conference on 3D Vision (3DV) |

Published by IEEE

Techniques that jointly perform dense 3D reconstruction and semantic segmentation have recently shown very promising results. One major restriction so far is that they can often only handle a very low number of semantic labels. This is mostly due to their high memory consumption caused by the necessity to store indicator variables for every label and transition. We propose a way to reduce the memory consumption of existing methods. Our approach is based on the observation that many semantic labels are only present at very localized positions in the scene, such as cars. Therefore this label does not need to be active at every location. We exploit this observation by dividing the scene into blocks in which generally only a subset of labels is active. By determining early on in the reconstruction process which labels need to be active in which block the memory consumption can be significantly reduced. In order to recover from mistakes we propose to update the set of active labels during the iterative optimization procedure based on the current solution. We also propose a way to initialize the set of active labels using a boosted classifier. In our experimental evaluation we show the reduction of memory usage quantitatively. Eventually, we show results of joint semantic 3D reconstruction and semantic segmentation with significantly more labels than previous approaches were able to handle.