On the relevance of adversarial queueing theory in practice

2014 Measurement and Modeling of Computer Systems |

Published by ACM

PDF | PDF

Adversarial Queueing Theory (AQT) has shown that seemingly innocent traffic injection rates might lead to unbounded queues in packet-switched networks – depending on scheduling strategies as well as topological characteristics. Little attention has been given to quantifying these effects in realistic network configurations. In particular, the existing AQT literature makes two unrealistic assumptions: infinite buffers and perfect synchrony. Because finite buffers inherently limit queue sizes, adversarial effects ultimately lead to packet loss which we address in this work. In addition, we study the effect of imperfect network synchronization under the packet loss metric. Our results, using analysis and simulation, indicate that classical AQT examples appear harmless under realistic assumptions but for a novel class of adversaries considerably higher loss can be observed. We introduce this class by giving examples of two new AQT concepts to construct loss-efficient network adversaries. Our analysis proves the robustness of these new adversaries against randomized de-synchronization effects in terms of variable link delays and nodal processing.