Overview of the TREC 2019 deep learning track
- Nick Craswell ,
- Bhaskar Mitra ,
- Emine Yilmaz ,
- Daniel Campos ,
- Ellen M. Voorhees
Text REtrieval Conference (TREC) |
Published by TREC
The Deep Learning Track is a new track for TREC 2019, with the goal of studying ad hoc ranking in a large data regime. It is the first track with large human-labeled training sets, introducing two sets corresponding to two tasks, each with rigorous TREC-style blind evaluation and reusable test sets. The document retrieval task has a corpus of 3.2 million documents with 367 thousand training queries, for which we generate a reusable test set of 43 queries. The passage retrieval task has a corpus of 8.8 million passages with 503 thousand training queries, for which we generate a reusable test set of 43 queries. This year 15 groups submitted a total of 75 runs, using various combinations of deep learning, transfer learning and traditional IR ranking methods. Deep learning runs significantly outperformed traditional IR runs. Possible explanations for this result are that we introduced large training data and we included deep models trained on such data in our judging pools, whereas some past studies did not have such training data or pooling.
Publication Downloads
TREC Deep Learning Track
April 24, 2024
The TREC Deep Learning Track studies information retrieval in a large training data regime. This is the case where the number of training queries with at least one positive label is at least in the tens of thousands, if not hundreds of thousands or more. This corresponds to real-world scenarios such as training based on click logs and training based on labels from shallow pools (such as the pooling in the TREC Million Query Track or the evaluation of search engines based on early precision).