Social Media as a Measurement Tool of Depression in Populations
- Munmun De Choudhury ,
- Scott Counts ,
- Eric Horvitz
In Proceedings of the 5th ACM International Conference on Web Science (Paris, France, May 2-May 4, 2013). WebSci 2013. |
Test of Time Award
Download BibTexDepression is a serious and widespread public health challenge. We examine the potential for leveraging social media postings as a new type of lens in understanding depression in populations. Information gleaned from social media bears potential to complement traditional survey techniques in its ability to provide finer grained measurements over time while radically expanding population sample sizes. We present work on using a crowdsourcing methodology to build a large corpus of postings on Twitter that have been shared by individuals diagnosed with clinical depression. Next, we develop a probabilistic model trained on this corpus to determine if posts could indicate depression. The model leverages signals of social activity, emotion, and language manifested on Twitter. Using the model, we introduce a social media depression index that may serve to characterize levels of depression in populations. Geographical, demographic and seasonal patterns of depression given by the measure confirm psychiatric findings and correlate highly with depression statistics reported by the Centers for Disease Control and Prevention (CDC).
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Copyright 2013 ACM 978-1-4503-1889-1