Tables as Semi-structured Knowledge for Question Answering
- Sujay Kumar Jauhar ,
- Peter Turney ,
- Eduard Hovy
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016) |
Question answering requires access to a knowledge base to check facts and reason about information. Knowledge in the form of natural language text is easy to acquire, but difficult for automated reasoning. Highly-structured knowledge bases can facilitate reasoning, but are difficult to acquire. In this paper we explore tables as a semi-structured formalism that provides a balanced compromise to this trade-off. We first use the structure of tables to guide the construction of a dataset of over 9000 multiple-choice questions with rich alignment annotations, easily and efficiently via crowd-sourcing. We then use this annotated data to train a semi-structured feature-driven model for question answering that uses tables as a knowledge base. In benchmark evaluations, we significantly outperform both a strong unstructured retrieval baseline and a highly structured Markov Logic Network model.