Targeted Disambiguation of Ad-hoc, Homogeneous Sets of Named Entities
- Chi Wang ,
- Kaushik Chakrabarti ,
- Tao Cheng ,
- Surajit Chaudhuri
Proceeding of 2012 International World Wide Web Conference |
Published by ACM – Association for Computing Machinery
In many entity extraction applications, the entities to be recognized are constrained to be from a list of “target entities”. In many cases, these target entities are (i) ad-hoc, i.e., do not exist in a knowledge base and (ii) homogeneous (e.g., all the entities are IT companies). We study the following novel disambiguation problem in this unique setting: given the candidate mentions of all the target entities, determine which ones are true mentions of a target entity. Prior techniques only consider target entities present in a knowledge base and/or having a rich set of attributes. In this paper, we develop novel techniques that require no knowledge about the entities except their names. Our main insight is to leverage the homogeneity constraint and disambiguate the candidate mentions collectively across all documents. We propose a graph-based model, called MentionRank, for that purpose. Furthermore, if additional knowledge is available for some or all of the entities, our model can leverage it to further improve quality. Our experiments demonstrate the effectiveness of our model. To the best of our knowledge, this is the first work on targeted entity disambiguation for ad-hoc entities.
© ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version can be found at http://dl.acm.org.