Machine Learning for Auto-Segmentation in Radiotherapy Planning
- K Harrison ,
- H Pullen ,
- C Welsh ,
- Ozan Oktay ,
- Javier Alvarez-Valle ,
- R Jena
The Royal College of Radiologists - Clinical Oncology | , Vol 34(2): pp. 74-88
Manual segmentation of target structures and organs at risk is a crucial step in the radiotherapy workflow. It has the disadvantages that it can require several hours of clinician time per patient and is prone to inter- and intra-observer variability. Automatic segmentation (auto-segmentation), using computer algorithms, seeks to address these issues. Advances in machine learning and computer vision have led to the development of methods for accurate and efficient auto-segmentation. This review surveys auto-segmentation techniques and applications in radiotherapy planning. It provides an overview of traditional approaches to auto-segmentation, including intensity analysis, shape modelling and atlas-based methods. The focus, though, is on uses of machine learning and deep learning, including convolutional neural networks. Finally, the future of machine-learning-driven auto-segmentation in clinical settings is considered, and the barriers that must be overcome for it to be widely accepted into routine practice are highlighted.